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300 W. K. BURTON AND OTHERS ON

Parts I and II deal with the theory of crystal growth, parts IIT and IV with the form (on the atomic
scale) of a crystal surface in equilibrium with the vapour. In part I we calculate the rate of advance of
monomolecular steps (i.e. the edges of incomplete monomolecular layers of the crystal) as a function
of supersaturation in the vapour and the mean concentration of kinks in the steps. We show that in
most cases of growth from the vapour the rate of advance of steps will be independent of their
crystallographic orientation, so that a growing closed step will be circular. We also find the rate
of advance for parallel sequences of steps, and the dependence of rate of advance upon the curvature
of the step.

In part IT we find the resulting rate of growth and the steepness of the growth cones or growth
pyramids when the persistence of steps is due to the presence of dislocations. The cases in which
several or many dislocations are involved are analysed in some detail; it is shown that they will
commonly differ little from the case of a single dislocation. The rate of growth of a surface containing
dislocations is shown to be proportional to the square of the supersaturation for low values and to
the first power for high values of the latter. Volmer & Schultze’s (1931) observations on the rate of
growth of iodine crystals from the vapour can be explained in this way. The application of the same
ideas to growth of crystals from solution is briefly discussed.

Part III deals with the equilibrium structure of steps, especially the statistics of kinks in steps, as
dependent on temperature, binding energy parameters, and crystallographic orientation. The
shape and size of a two-dimensional nucleus (i.e. an ‘island’ of new monolayer of crystal on a
completed layer) in unstable equilibrium with a given supersaturation at a given temperature is
obtained, whence a corrected activation energy for two-dimensional nucleation is evaluated. At
moderately low supersaturations this is so large that a perfect crystal would have no observable growth
rate. For a crystal face containing two screw dislocations of opposite sense, joined by a step, the acti-
vation energy is still very large when their distance apart is less than the diameter of the corre-
sponding critical nucleus; but for any greater separation it is zero.

Part IV treats as a ‘co-operative phenomenon’ the temperature dependence of the structure
of the surface of a perfect crystal, free from steps at absolute zero. It is shown that such a surface
remains practically flat (save for single adsorbed molecules and vacant surface sites) until a transition
temperature is reached, at which the roughness of the surface increases very rapidly (‘surface
melting’). Assuming that the molecules in the surface are all in one or other of two levels, the results
of Onsager (1944) for two-dimensional ferromagnets can be applied with little change. The transition
temperature is of the order of, or higher than, the melting-point for crystal faces with nearest
neighbour interactions in both directions (e.g. (100) faces of simple cubic or (111) or (100) faces of
face-centred cubic crystals). When the interactions are of second nearest neighbour type in one
direction (e.g. (110) faces of s.c. or f.c.c. crystals), the transition temperature is lower and corre-
sponds to a surface melting of second nearest neighbour bonds. The error introduced by the
assumed restriction to two available levels is investigated by a generalization of Bethe’s method
(1935) to larger numbers of levels. This method gives an anomalous result for the two-level problem.
The calculated transition temperature decreases substantially on going from two to three levels,
but remains practically the same for larger numbers.

Note on authorship. Although at all times a constant interchange of ideas took place between
all three authors, the principal contributions of one of us (F.C.F.) are to part II of this paper.
Part IV, and all the calculations in parts I and III, are due exclusively to W.K.B. and N.C.

A THEORY OF GROWTH OF REAL CRYSTALS

ParTt I. MOVEMENT OF STEPS ON A CRYSTAL SURFACE

1. Introduction
The theory of growth of perfect crystals has been developed extensively during the past thirty
years, especially by the work of Volmer (1939), Stranski (1928, 1934), and Becker & Déring
(1935). The essential ideas were put forward earlier by Gibbs (1878).
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THE GROWTH OF CRYSTALS 301

According to this theory, when all surfaces of high index (stepped surfaces) have dis-
appeared, the crystal will continue to grow by two-dimensional nucleation of new molecular
layers on the surfaces of low index (saturated surfaces). As in all nucleation processes, the
probability for the formation of these two-dimensional nuclei is a very sensitive function of
the supersaturation. This probability is quite negligible below a certain critical supersatura-
tion and increases very rapidly above it. Assuming reasonable values for the edge energy of
the two-dimensional nuclei, one recognizes that this critical supersaturation should be of the
order of 50 9,. At the supersaturations at which real crystals grow (1 9%, and even lower) the
probability of formation of nuclei should be, according to this theory, absolutely negligible
(Burton, Cabrera & Frank 1949; Burton & Cabrera 1949, cf. also part III).

Ficure 1. The presence of a kink in a step on a crystal surface.

Recently, Frenkel (1945) pointed out that the structure of a perfect crystal surface above
the absolute zero of temperature would have a certain roughness produced by thermal
fluctuations. He discussed the structure of a monomolecular st¢p and proved that it will
contain a high concentration of kinks, illustrated in figure 1, and introduced before by
Kossel (1927) and Stranski (1928). Burton & Cabrera (1949, cf. also part III) have shown
that the concentration of kinks is even larger than was supposed by Frenkel; this result is very
important from the point of view of the rate of advance of the steps, which will be developed
in part I of this paper. On the other hand, Frenkel generalized this idea to the formation of
steps in a perfect crystal surface, but Burton & Cabrera (1949, cf. also part IV) have shown
that steps will not be created by thermodynamical fluctuations in a low-index crystal surface,
unless, perhaps, close to the melting-point; therefore the steps required for growth can only
be produced, on a perfect crystal surface, under a highly supersaturated environment.

We conclude that the growth of crystals under low supersaturations can only be explained
by recognizing that the crystals which grow are not perfect, and that their imperfections (in
particular, dislocations terminating in the surface with a screw component) will provide the
steps required for growth, making two-dimensional nucleation unnecessary. This idea,
introduced by Frank (Burton ef al. 1949; Frank 1949) will be developed in this paper, and
we shall see that it explains most of the features of crystal growth at low supersaturations.

This theory of growth of real crystals assumes the existence of dislocations in them, but
does not depend critically on their concentration. The study of crystal growth should perhaps
also explain the formation of dislocations which, as in the case of steps in a crystal surface,
cannot be due to thermodynamical fluctuations. Several mechanisms can be visualized for

40-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

302 W. K. BURTON AND OTHERS ON

the formation of new dislocations during growth (Frank 1949), but no detailed theory has
yet been formulated.:

2. Mobility of adsorbed molecules on a crystal surface
We know that in general a crystal surface in contact with its vapour will contain a certain
concentration n; per cm.? of adsorbed, essentially mobile molecules. Under equilibrium
conditions, the concentration ny of adsorbed molecules will be given by a formula of the

type ng = nyexp (—W/kT), (1)

where I, is the energy of evaporation from the kinks on to the surface; 7, contains entropy
factors, but in simple cases will be of the order of the number per cm.? of molecular positions
on the surface.

The process of growth of a crystal surface with steps will be the result of three separate
processes: (i) exchange of molecules between adsorbed layer and vapour, (ii) diffusion of
adsorbed molecules towards the steps and exchange with them, and (iii) perhaps also
diffusion of adsorbed molecules in the edge of the steps toward the kinks and exchange with
them.

In order to discuss the role of the diffusion on the surface we must introduce the mean
displacement x, of adsorbed molecules. This can be defined in quite general terms by Einstein’s

formula: 2 — D, (2)

where D is the diffusion coefficient and 7, the mean life of an adsorbed molecule before being
evaporated again into the vapour. For simple molecules we can write

D, — &' exp (— UJET), (3)
and 1/7, =vexp (—W/[kT), (4)

“where U, is the activation energy between two neighbouring equilibrium positions on the
surface, distant a from each other, and W, the evaporation energy from the surface to the
vapour. The frequency factors »" and » would both be of the order of the atomic frequency
of vibration (v ~ 10 sec.”!) in the case of monatomic substances, but they will be different
in the case of more complicated molecules. Using (3) and (4), (2) becomes

x, = aexp{(W/—U,)|2kT}, (5)

assuming »' ~v. The condition for the diffusion on the surface to play an important role is
that x,>a, and therefore from (5), W/ > U,. This is probably always the case; then x, can be
much larger than ¢ and increases rapidly as the temperature decreases.

In order to have an idea of the values that we can expect for x,, let us consider, for instance,
a (1,1,1) close-packed surface of a face-centred cubic crystal. By simple considerations
regarding the interaction ¢ between nearest neighbours only, W, = 3¢, i.e. half the total
evaporation energy W = W, W; while U, ~ ¢ = §W. However, fuller calculations carried
out by Mackenzie (1950) using Lennard-Jones forces show that U, is considerably smaller,
about 55 W. Hence, in this case, (5) becomes

x,~aexp (3¢/2kT) ~ 4 x 10% (6)

for the typical value ¢/kT ~ 4.


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
LU

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE GROWTH OF CRYSTALS 303

It is interesting to notice that x, will be a function of the crystal face considered, both W
and U, being different for different faces. In general, x, will be smallest for the closest packed
surface, because W, increases more rapidly than U,. For instance, for a (1,0, 0) surface in
a face-centred cubic (f.c.c.) crystal assuming nearest neighbour forces, W = 4¢ and U is
probably still very small. Then

x,~aexp (20/kT) ~ 3 x 103%a.

3. Concentration of kinks in a step

Frenkel (1945) and Burton & Cabrera (1949, cf. also part III) have shown that these steps
must always contain a large concentration of kinks. In the case of short-range intermolecular
forces, we can briefly summarize in the following manner the results of the theory which have
an important bearing on growth.

Let a close-packed crystallographic direction be taken as the x-axis, and consider a step
which follows this axis in the mean, so that the surface is one molecule higher in the region
y<<0 than in the region y> 0. Following the step along the direction of increasing x, points
where y increases or decreases by a unit spacing a are called positive or negative kinks
respectively. For this orientation, the step contains equal numbers of positive and negative
kinks, and their total number is less than for any other orientation. Let 27 and ¢ be the
probabilities for having a kink or no kink, respectively, at a given site in the step. Then we

must have
njqg=exp(—w/kT), 2n+q=1,

where w is the energy necessary to form a kink. Hence the mean distance x, = a/2n between
kinks is

% = ga{exp (w/kT)+2} ~ jaexp (w/kT), (7)
where a is the intermolecular distance in the direction of the step.

As the inclination 6 of the step relative to a close-packed direction increases, the number
of kinks increases. Let #, and n_ be the probabilities for having a positive or negative kink
respectively.

As an approximation, we neglect the difference between ¢ and unity. Then

en=mn,+n_, O=n,—n_,
where 7 is the probability for having a kink of any kind and @ is assumed to be small. For any
inclination, and from thermodynamical considerations,
nyn_=exp(—2w/kT).

Thus the mean distance x,(f) between kinks will now be

%o(0) = %o{l —5(xo/a)? 0%, (8)

assuming 0 <a/x, and x, is given by (7).

No detailed calculation of w has yet been made, but simple considerations suggest that w
must be a small fraction of the evaporation energy. For instance, in a close-packed step in
a (1,1,1) face of a f.c.c. crystal, with nearest neighbour interactions 4, it is easy to see that
w is equal to a quarter of the energy necessary to move one molecule from a position in the
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304 W. K. BURTON AND OTHERS ON

straight step to an adsorption position against the straight step, equal to 2¢; hence w = ¢
or {5, and the mean distance between kinks is, from (7),

% — Jaexp (§/2kT) ~ 4a, (9)
for the typical value ¢/k7T ~ 4.

The concentration of kinks in the steps will remain practically unchanged even if the
vapour is supersaturated. Hence the problem of the rate of advance of a step is reduced to
a classical diffusion problem on the surface. The important ratio in this calculation is x,/x,.
From (5) and (7) this is approximately 2exp {($W;— U, —w)/kT?}. With the estimates of
Wy, U, and w which we have made above on the basis of the simple model of a close-packed
homopolar crystal, this is about 102. Thus it appears that we may generally assume x> x,,
in which case we can perform the diffusion calculation regarding the step as a continuous-
line sink. It is an interesting corollary of this case that the rate of advance of a step is then
independent of its crystallographic orientation. However, the estimate is uncertain for
various reasons, such as the neglect of entropy factors, and we shall also examine the cases
in which x, is comparable with or larger than x. |

4. Rate of advance of a step

The supersaturation ¢ in the vapour is defined as
c=a—1, a=/plp, (10)

where p is the actual vapour pressure, p, the saturation value, and o will be called the
saturation ratio. We assume o to be constant above the surface. There will also be a super-
saturation o, of adsorbed molecules on the surface (in general, dependent on position)

deﬁned by o's = CCS'—“ 1, (ZS == 7’ls/7'l50, (]-].)

where n, and ny arée the actual and equilibrium concentration of adsorbed molecules

respectively.
The equations governing the diffusion of adsorbed molecules towards the step are easily

written down. The current on the surface will be

js:"”Dsgradns:DsnsOgrad%a 3#:0—0-5: (12)
where D, is the diffusion coeflicient of adsorbed molecules. There will also be a current j,
going from the vapour fo the surface, which is easily seen to be

jv = (06—-—068) nsO/Ts = ”soWTs, (13)
where 7, is the mean life of an adsorbed molecule on the surface, defined in § 2.

Let us make the assumption (to be justified a posteriori) that the movement of the step can
be neglected in the diffusion problem, so that the adsorbed molecules have a steady distribu-
tion on either side of the step which is practically the same as though the step were absorbing
molecules without moving. Under these conditions ¥ must satisfy the continuity equation

divjs = Ju»
or using (6) and (7) and assuming D, independent of direction in the surface
2V =9, (14)

where x, is the mean displacement of adsorbed molecules, defined in § 2.
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Now if we compare the typical values for x, and x, estimated in (6) and (9) respectively,
we see that in most cases, certainly for monatomic substances, x, > x,. Under these conditions,
each molecule deposited from the vapour on the surface near the step will have a high
probability to reach a kink in the step before being evaporated again into the vapour.
Therefore the concentration of adsorbed molecules near the step will be controlled by
evaporation from and condensation into the kinks. Then, provided this exchange is very
rapid, the concentration near the step should be maintained equal to the equilibrium value,
independently of the supersaturation existing in the vapour.

Thus, if we assume that ¢, = 0 near the step, and ¢, = ¢ far from it, equation (14) has the
simple solution

¥ = oexp (Fy/x,), (15)

where y is the distance to the step, the minus sign being used for y>0 and the plus sign for
y<<0. Now the current j going into the step per cm. per sec. will be obtained from (12) using
(15) and putting y = 0. The velocity of the step is then v, = j/n,, where 1/n, is the area per

molecular position; therefore
Ve, = 20x,vexp (— WIKT), , (16)

where expressions (1) and (4) for n,, and 7, have been used, and W = W, W/ is the total
evaporation energy. The factor 2 comes about because of the contribution from y>0 and
y<<0. The advance of the step is therefore owing to the molecules condensing from the
vapour on a strip of width x, at both sides of the step. This expression represents the maximum
velocity of a step in a given direction, and if D, and therefore x, were independent of direction,
then the velocity of the step would be independent of its orientation.

We can now justify our neglect of the motion of the step when treating the diffusion
problem. This is permissible if the characteristic distance (D,/v,,) is great compared with the
characteristic distance x,. Now, from (3), (5) and (16),

Voo X/ D, = 20 exp (—W,[kT) ~ 20 exp (—12) <1.

We believe that (16) is correct, at least in the case of monatomic substances. In the case of
molecular substances we must introduce two possible complications: (i) as Wyllie (1949)
has pointed out the exchange between the kinks and the adsorbed layer might not be rapid
enough to maintain ¢, = 0 near the kinks; (ii) the condition x,> x, is perhaps not satisfied.

It is easy to see that (i) introduces a supplementary factor #< 1 in formula (16) given by

f = (1+x/ar)™t, (17)

where 7 is the time of relaxation necessary to re-establish equilibrium near the step. The
supersaturation near the step will then be ¢,(0) = (1—£) ¢; # will be smaller than 1, for
instance, when the rotational entropy of the adsorbed molecules is much larger than that of
the molecules in the solid. If condition x> x, is nevertheless satisfied, then v, should still be
“independent of the orientation of the step.

On the other hand, if x, > x, is not satisfied, the supersaturation near the step will not be
constant, and will be a function of x,. The other extreme case, when x,> x,, is easy to consider.
It is then necessary to discuss the influence of the diffusion of adsorbed molecules in the edge
of the step. If the contribution of the current via the edge is important, then this will help
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306 W. K. BURTON AND OTHERS ON

to keep the supersaturation constant near the step, even if x, > x,. The most unfavourable case
would be when the current via the edge can be neglected altogether. Then, assuming D, to
be independent of direction, the required solution of (14), around an isolated kink on the

step, is ’
) = pr g,

where K is the Bessel function of second kind with imaginary argument and order zero, and
we assume that the supersaturation of adsorbed molecules is maintained equal to (1—/) ¢
at a distance 7 = a from the kink. The current going into every step is then easily calculated
and the velocity of advance of the step is given by

vy, = {200x,vexp (— WIkT )} mx [x,1n (2x,/ya),
where we assume always x,>a and we use the approximate formulae
Ko(ajx,) = 1n (2x,/ya), K (afx;) = —x]a,
y = 1-78 being Euler’s constant. We may verify once again that, at least for sufficiently small
supersaturations, we may neglect the motion of the kink in treating the corresponding

diffusion problem. The criterion this time is (v x,/D;) <1, where vy, = vo¥p/a. Now by
use of (3) and (5)

Uink %5/ Dy = [2mfo exp {— (W FU,—3 W) KT {In (2/y) + (W= U) [k T.

The exponential factor here remains considerably less than unity for any reasonable estimate
of the energies, especially as the condition x,>x, is only likely to arise when U, is unusually
large or W, unusually small, though U, can scarcely exceed W, so as to make the denominator
small.

We see that apart from the factor f, the maximum velocity (16) is multiplied by another

factor ¢,<1, given by ¢y = mx, %, In (2% /ya). (18)

In the general case, the velocity of advance of the step can also be represented by the general
formula v — 20x,vexp (— WIKT) feo, (19)
where ¢, is between 1 and the value given by equation (18).

The calculation of ¢, in the general case is a difficult problem. The easiest way to solve it is
to assume that there is a diffusion in the edge of the step and that it is important enough for
the current going directly from the surface to the kinks to be neglected. In appendix A we
treat along these lines the problem of a single step with equally spaced kinks.

The relative importance of the current diffusing in the edge of the step and that diffusing
on the surface will be represented by the non-dimensional factor

‘De neO/Ds N

where D, and n,, are the diffusion coeflicient and the equilibrium concentration respectively
of adsorbed molecules in the edge. This factor is equal to (x,/a)?, where x, is the mean dis-
placement of adsorbed molecules in the edge. Actually x2 = D,7,, and by definition

7, =m0/ Dingg = (1/v) exp{(We+U) [k T};
therefore x2 = D,noa/D,ny~ a?exp {(W,+U,—U,)kT}, (20)
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where I, is the energy necessary to take an adsorbed molecule from the edge to the surface
and U, is the activation energy for diffusion in the edge.

It is clear that D,>>D,; on the other hand, nya<n,,. If x,>a, the current going into the
kinks goes essentially via the edge and the point of view adopted above is justified. If, on
the contrary, x,<a, the important contribution is that due to direct condensation from the
surface into the kinks. The case x, ~ a can also be interpreted as if the edge did not exist at all,
since this would correspond to W, =0, U,= U, which implies also x, = a. Hence the
method of calculation suggested above should give for x, ~ a the same result as if the influence
of diffusion in the edge were neglected altogether.

1

O ‘ R S —— L o v ]
1 - 2 103 104

Xola

Ficure 2. The factor ¢, as a function of x,/a for the values of x,/a indicated on the curves.

It is difficult in general to estimate x,. In the particular case of a close-packed step in a
(1,1,1) face of a f.c.c. crystal, with nearest neighbour interactions ¢, we can estimate
W, =24, U ~0, U ~2¢, hence x, ~a. Assuming this to be the case, the general formula
given in appendix A reduces to

ey = 1+2bIn{(4bx,/a)/(1 4+ (1 +b%)1)}, b = xy/2mx,, (21)

which is represented in figure 2 as a function of xy/a for several values of x/a. Itis interesting
to notice that if x, increases indefinitely in (21), then

Co = 7sz/xo In (4xs/a)3
which practically coincides with (18) as weshould expect. We notice that ¢, differs appreciably

from unity for x,>x,.

Vol. 243. A. 41
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In conclusion to this paragraph, and from the estimates of ¥, and x, made in §§2 and 3,
we deduce that in most cases of growth from the vapour the rate of advance of the step must be
practically independent of its orientation. In some cases, perhaps, the factor ¢, in (19) could be
smaller than 1 for the close-packed slowest steps, containing a minimum number of kinks.
As the orientation of the step deviates from that of closest packing, ¢, will become rapidly
equal to 1.

5. Parallel sequence of steps
Another interesting problem is that of the movement of a parallel sequence of steps

separated by equal distances y,.
If we assume that the distance x, between kinks in every step satisfies the condition
%y<x,, and that near every step o, = 0, the solution of equation (14) is easily seen to be

_ g cosh(y/x)

V= 7 cosh cosh (y,/2x,) (22)
between two steps, where y is the distance from the mid-point between two steps. The
current going into every step is again calculated from (12), using (22) and putting y = 1y,;
the velocity of every step is then

Vo = 20x,vexp (— W/kT) tanh (y,/2x,), (23)

which reduces to (16) if y,— co.

In the general case where (i) the interchange with the kinks is not rapid enough to
maintain ¢; = 0 near the step and (ii) the condition x,<<x, is not satisfied, we obtain again
a general formula of the type

Vo = 20x,vexp (— W/kT) tanh (y,/2x,) fco, (24)

where ¢,<1 is a function of x, and y,. The calculation of ¢, is now rather complicated.
In the particular case when x, ~ @ in the edge of the steps, one can give for ¢, the approxi-
mated expression

1/eg = 1+2b tanh (yo/x,) [In {(4bx,/a) /(14 (1+5%)")}+ (2x/y,) tan~" 4], (25)
b = x,/2mx,.

For y,— co this expression reduces of course to (21). As y, decreases, ¢, in general will be
nearer 1 than (21) is, as we should expect, but this does not mean that for a sufficiently small
value of y, we shall get ¢, = 1, because of the second term in the parentheses in (25).

6. The rate of advance of small closed step-lines

We know that, given a certain supersaturation in the vapour, there will be a certain two-
dimensional nucleus which is in unstable equilibrium with it. The shape and size of this
critical nucleus are perfectly defined; its shape has been studied in detail in one special case,
Burton et al. 1949; cf. also part ITI. Itis interesting to notice at this point that the number of
kinks per unit length in every position of the edge of the critical nucleus is the same as that
in an infinite step having the same orientation.

If the nucleus is larger than the critical one it will grow. Then its shape will be determined
essentially by the differences in velocity for the different orientations and not by thermo-
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dynamical considerations. In particular, if the velocity is the same for all orientations, it
will become circular. The study of the shape of a growing nucleus of large dimensions will be
considered in detail by one of us (F. C. F.) in a later paper; here we are concerned with
the absolute value of the velocity when the dimensions are not very different from those of
the critical nucleus.

Let us consider first the case of independence of velocity on orientation, when the nucleus
is circular. We shall consider afterwards what changes can be expected when the velocity
depends on the orientation.

The mean evaporation from the nucleus to the surface will be a function of its dimensions.
If its radius is p, and we define an edge energy of the nucleus equal to y per molecule, the
mean energy of evaporation will be

W.p) = W,—(valp),

where a is as usual the intermolecular distance.

Let o be the supersaturation in the vapour; the nucleus will grow, but at every moment a
steady distribution of adsorbed molecules will be formed provided the nucleus is not too
small. The influence of the movement of the boundary on the diffusion problem can be
neglected for the low supersaturations considered. The steady supersaturation in the surface
will satisfy the continuity equation (14) which now becomes

V() =¢(r), §(r) = o—0,(r). | (26)

The solution of this equation is

v) =W P <o,

Yir) = wp)%’% (r>p), (27)

where [ and K|, are the Bessel functions of first and second kind with imaginary argument.
¥(p) is the value of ¥ near the edge of the nucleus. If the interchange of molecules between
the nucleus and the surface is rapid enough, the supersaturation o (p) near the edge of the
nucleus will be maintained equal to that which would be in equilibrium with it. This super-
saturation o ,(p) is given by

o,(p) = “RLAOIE 1 — exp rajok) -1

therefore U(p) = o—o,(p) = o—[exp (ya/pkT)—1]. (28)
The current going into the nucleus is now

j = 27rstnS0((?gﬁ/0r)r=p = z’nDsnstﬁ(p)/IO(p/xs) KO(p/xs)a
where the formulae

I)(z) = Li(2), Ki(z) =—Ki(2), I(z) Ki(2)+1(2) Ko(2) = 1/z

have been used. The radial velocity, v(p) = j(p) /2mpn,, is therefore
v(p) = #ivexp (—WIKT) ¥ (p)/pk(p/%s) Ko(p/*s), (29)

41-2
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where we have used the expressions for x,, 7, and 7y, given by (2), (4) and (1). Current and
velocity change sign when ¢,(p,) = o, which defines the critical nucleus to have a radius p,
given by
0. =7valkTIna, a=1+o0. (30)
When p>x; we can use the approximation
Lo(p/xs) Kolplx,) = x,/2p,

o(p) = vala—ar®)fs, a=1+0, (31)

v(p) = va(1—p./p); (32)

where v,, is the maximum velocity (16) of a straight step of any orientation, calculated in § 4.
This formula will be valid down to p = p,, provided the supersaturation is low enough for g,
to be larger than x,, and Ina~0¢. As ¢ increases and p, decreases, v(p) will be a more
complicated function for p ~ p,.

It is also interesting to consider the rate of advance of a sequence of concentric circles,
distant y, from each other. The diffusion problem can also be solved in a similar way. The
radial velocity of the circle of radius p turns out to be

o(p) = 2ox,vexp (— WIKT) tanh (55/25,) (1~ p,/p), (33)

so that (29) becomes

or if ¢ is small,

when p>x,, y,<p and Ina ~ 0. We see that v(p) is again of the general form (32), if v, means
now the velocity (23) corresponding to a sequence of parallel steps. We see therefore that
the only change in the rate of advance of a large closed step of radius p, with respect to that
of an infinite step is the factor (1 — p,/p). This is just what we should expect because the mean
supersaturation near the edge of the nucleus is not zero, as in the case of the straight step, but
7p,/p-

The same general formula (32) will apply also when (i) the interchange of molecules
between nucleus and surface is not rapid, and (ii) the velocity depends on the orientation of
the edge. Then the nucleus will not be a circle, but the close-packed slowest orientations of
the edge will move according to (32) where v, is now given by the general formula (24);
p will be the normal distance from the edge to the centre of the nucleus and p, that corre-
sponding to the critical nucleus.

ParT II. RATES OF GROWTH OF A CRYSTAL SURFACE
7. Introduction

In part I we have studied the movement of steps on a perfect crystal surface, without
considering their origin. This information is sufficient to calculate the rates of growth of
stepped surfaces (those of high index) where the steps exist because of the geometry of the
surface; nevertheless, it is clear that these steps will disappear in any finite crystal, after
a finite amount of growth which completes the body bounded by close-packed, unstepped
surfaces circumscribed to the initial crystal.

Frank (1949) has shown that further growth of these surfaces must be attributed to the
presence of steps associated with crystal defects, in particular dislocations having a component
of displacement vector normal to the crystal face at which they emerge, ‘screw dislocations’
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for short, though they are not necessarily ‘pure screw’ dislocations. He has also shown that
when the crystal is growing under a supersaturated environment, the step due to a dislocation
winds itself in a spiral in such a way that a single screw dislocation sends out successive turns
of steps (figure 3). If the step is due to a right- and left-handed pair of dislocations, they will
send out closed loops (figure 4) provided their distance apart is greater than the diameter
of a critical nucleus. In both cases the dislocations will form pyramids and the concentration
of step lines thereon will be large and practically independent of the number of dislocations.
This provides an interpretation of the pyramids of vicinal faces long recognized as a normal

4 \Bs
4 ~
pum—

/ /

F‘h /———C—_:a g—%
Ficure 3. Growth pyramid due to a single screw Ficure 4. Growth pyramid due to a pair of
dislocation. dislocations.

feature of slow crystal growth (Miers 1903, 1904). In this part we shall study in more detail
the mathematics of these pyramids (§§8, 9); once the rate at which these pyramids grow is
known we shall apply the results to growth from the vapour using the formulae for rate of
advance of steps deduced in I (§§ 10, 11). The application of the same ideas to growth from
solution will also be considered briefly in §12. The resulting topography of the crystal
surface will be discussed by one of us in a later paper.

8. The growth pyramid due to a single dislocation

Let us first consider the spiral due to a single dislocation ending on an otherwise perfect
crystal surface. We may suppose that, as new layers are added, the direction of the dislocation
remains perpendicular to the surface, since this will usually minimize the elastic energy. If
the rate of advance of a step is independent of its orientation (probably the case during
growth from the vapour, see I) the growing spiral will form a low cone, but it will tend to
form a pyramid when the rate of advance depends on the orientation (as is illustrated in
figures 3 and 4). We consider first the case of a growing cone.
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Following any increase in supersaturation, the step due to the dislocation will rapidly
wind itselfup into a spiral centred on the dislocation, until the curvature at the centre reaches
the critical value 1/p,, at which curvature the rate of advance falls to zero; the whole spiral
will then rotate steadily with stationary shape.

We know (I, formula (32)) that the normal rate of advance of a portion of spiral with
radius of curvature p is given by 2(p) = v0(1—p,Jp),; (34)

provided the supersaturation is not too high. Now let §(r) represent the rotating spiral, in
(rotating) polar co-ordinates (r, ). The radius of curvature at a point r will be

p = (14+r20"%)/(20" 420" +16"), (35)
¢’ and 6" being the derivatives of §(r). If the angular velocity of the whole spiral is o, the
normal velocity at the point 7 is o(r) = wr(1+720'2), (36)

We must now find 6(r) and w from these three equations.
A good approximation is obtained by taking an Archimedean spiral

r=2p,0>0, (37)
which has the proper central curvature. o is then given by

0 =0y,/2p,. (38)
This approximation does not satisfy (34), especially for small r, but nevertheless gives a good
approximation to .

A better approximation can be obtained in the following way: one obtains the solutions
for small r (neglecting 72) and for large r (neglecting 1/r%):

r—>0: 0 =1/2p,—wr/30,p, B (39)
r—>00: 0 = (0fve) (1+ p/r). (40)

Then, choosing a general expression of the form
0" = a+b/(1+cr), (41)

one determines, a, b, ¢ and v in such a way that (41) reduces to (39) and (40) for the proper
ranges of 7. We obtain in this way

= gy e HIn 1 +r/3*pc)],} 2
0 = 3, [2p,(1+ 3" = 0:63v,/2p,.

This solution satisfies (34) within a few units per cent of v,, for all values of p. The interesting
point is that the value of » obtained differs from (38) only by a factor close to 1, showing
that o is insensitive to the actual law of dependence of v on p in the range in which p ~ p,.
Even the crudest approximation to (34),

p=p;. v=0; P>pi V=g,

(Frank 1949) gives an angular velocity only twice as large as (38), i.e. just over three times
the best approximation (42).
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In the rest of this part, the number of turns of the spiral per second, w/2m, will be called
the activity. The actual rate of vertical growth R of the pyramid and therefore of the crystal

will clearly be
R = wa/2m = nyQu,[4Tp,, (43)

where a = n, Q is the height of a step (7, the number of molecular positions per cm.? in the
surface, Q the volume of a molecule), and we have used the approximation (38) for w.
The distance y, between successive turns of the spiral for large r is given by

Yo = 2m/0" = 4mp,. (44)

These formulae will also be approximately valid when there is an influence of the crystallo-
graphic orientation on the rate of advance of the steps. v, is then the value corresponding to
the slowest advancing orientation, and p, half the dimension of the critical two-dimensional
nucleus.

9. The growth pyramids due to groups of dislocations
9-1. Topological considerations |

We now consider the interactions between the growth spirals centred on different dis-
locations. We have already considered the case of a pair of opposite sign, and seen that if
they are closer together than a critical distance (2p, in the simple case) no growth occurs,
while if they are further apart than this they send out successive closed loops of steps. It is
obvious that if there are fwo such pairs these loops unite on meeting, and the number of steps
passing any distant point in a given time is the same as if only one pair existed. The whole
area may be formally divided into two areas by a locus of intersections of the two families,
and one area may be considered to receive steps from the one centre, the other from the other
centre.

Hence two similar pairs of dislocations of opposite sign, separated by a distance large
compared with the separation in the pairs, have the same activity as one pair alone. Unless
the separation between pairs is a visible distance, there will be no macroscopic distinction
from the case of one pair.

If the two families of loops are circles growing at the same rate the locus of intersections
is a hyperbola in the general case, and in the symmetrical case a straight line bisecting the
line of centres. Consideration of the locus of intersections, though trivial in the present case,
is useful for the treatment of more complex cases later. The conclusion remains valid if the
loops are not circles, but, on account of dependence of growth rate on crystallographic
orientation, are deformed into polygons. The same point applies in cases treated later.

We chose to start with the case of two opposed pairs as the simplest, since it can be topo-
logically analyzed in terms of the locus of intersections of growing circles. When we consider
two simple dislocations, instead of pairs, we have to consider the locus of intersections of spirals.
If they are of opposite sign, a locus of intersections still divides the area into two parts which
may be said to be fed with steps from each centre respectively. Of the possible loci of inter-
sections, depending on the relative phase of rotation of the two spirals, the most important one
is that which is symmetrical—the bisector of the line of centres. For in this case there is
a possibility for an influence to be transmitted along each step from the point where turns of
the two spirals meet, in to the respective centres, and there modify the rate of rotation. If
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they meet nearer to the centre of one than the other, there is . tendency for the rate of
rotation of the former to be increased. So, in time, the two become synchronized in phase
and the locus of intersections is the symmetrical one. Asshown in appendix B, the increase in
rate of advance of the steps which is transmitted along the spirals from their meeting point
to the neighbourhood of their dislocation centres produces a small increase in the rate of
rotation of the spirals amounting probably at most to a few units per cent when the distance
between dislocations is of the order of 3p, and decreasing exponentially for larger distances.
Then the activity of the pair is indistinguishable from the activity of one; at the same time
there is no important topological difference from the case of growing circles.

1
!
]
I
|
|
\
\
\

Ficure 5. A pair of dislocations of like sign, separated by a distance /=A4B > 27p,.

A pair of dislocations of like sign gives a more complex situation. If they are far apart, a locus
of intersections still divides the area into two parts, which may be said to be fed with steps
from each centre respectively. As before, there will be a tendency for the symmetrical case
to establish itself. The locus of intersections is then no longer a straight line, but an S-shaped
curve. Ifthe spirals are represented by equation (37) and their centres are a distance / apart,
thelocus crosses the line of centres at an angle tan~! (//4p,) and passes to infinity on asymptotes
which make an angle cos™! (2mp,/l) with the line of centres (figure 5). The activity is still
indistinguishable from that of one dislocation.

However, if the centres are closer together than half the radial separation between successive
turns, i.e. than 2mp,, the spirals have no intersections except near the origin. The locus of
intersections is now an S-shaped curve running from one centre to the other, and no longer
divides the area into two (figure 6). In this case the turns of both spirals reach the whole of
the area. In the limiting case in which the distance between dislocations / is much less than
p, we have effectively the complete Archimedean spiral r = 2p,0, with the branches for
both negative and positive 7. Actually it still consists of a pair of spirals, which exchange
centres on meeting, at every half-turn. If /<p, this shift of centres should scarcely affect the
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rotation of the spirals, so that the activity of the pair should be fwice the activity of a single
dislocation. For small non-negligible values of [/ p, we may crudely estimate that the shift of
centres imposes a delay corresponding to the time required for an unperturbed spiral to turn
through an angle of the order of magnitude //p,, but we make no quantitative estimate

[ AA,B

Ficure 6. Pair of dislocations of like sign, at a distance d < 27p,.

Ficure 7. A group of dislocations of the same sign.

beyond saying that the activity of the pair now lies between 1 and 2 times the activity of
a single dislocation.

A group of s dislocations of the same sign, each a distance smaller than 2mp, from its next neigh-
bour, will generate a spiral system of s branches. Supposing they are arranged in a line (the
most likely arrangement, since groups of dislocations usually belong to ‘mosaic’, ‘subgrain’
or ‘lineage’ boundaries), and the length of the line is L, it is easy to see that each branch will
take a time of the order of 2(L+2mp,)/v,, to execute a circuit round the group so that the
resultant activity of the group is s/(1+4-L/2mp,) times that of a single dislocation (figure 7).

Vol. 243. A. 42
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If L is small compared with p,, the activity of the group is s times that of a single dislocation;
if L is large, and the average distance between dislocations is / = L/S, the activity is 2mp,/l
times that of a single dislocation.

In the more general case of a group of like dislocations not in a straight line, we may
replace L in the above formula by P, where P is the perimeter of the group. But in this case
it may happen that the growth fronts have difficulty in penetrating into the group itself.
The dislocation group will still promote growth outside it, but may develop a pit in the
surface of the crystal.

In concluding this subsection we can say that the activity of a group of dislocations is in
general greater than that of a dislocation alone by a factor ¢, which in the case of a group of
dislocations of the same sign can be as great as the number of dislocations contained in it.

In any case, the distance y, between steps produced by the group, far from it, will be given
by their rate of advance v,,, divided by the number of steps passing a given point per sec.:

ew/2m. Therefore, using (38),
Yo = 4mp,fe. (45)

We shall see in § 10 that in spite of the fact that the activity of a group can be several times
greater than that of a single dislocation, the absolute value of the activity cannot surpass a
certain maximum, the reason being that the rate of advance decreases when the distance

between steps decreases.

9-2. General case

Suppose now we have any distribution whatever of dislocations in a crystal face, and a fixed
degree of supersaturation ¢, and consequently a fixed value of p, (where ¢ and p, may be
slowly varying functions of position on the face). We now make a formal grouping of the
dislocations. The first group consists of inactive pairs, all pairs of dislocations of opposite sign,
closer together than 2p.. These have no activity by themselves, and their only effect, save in
exceptional cases when they may possibly fence off a region of the crystal face, and inhibit
growth there, is to impose a small delay on the passage of steps originating elsewhere, which
to a first approximation may be disregarded. When a particular dislocation has two neigh-
bours closer than 2p,, the pairing may be made arbitrarily, but in such a way that as many
close pairs as possible are assigned to this class. We now take 2mp, as the effective distance
within which dislocations influence each other’s activity, and by drawing imaginary lines
connecting all dislocations closer together than this, divide all the remaining dislocations
into groups, whose members influence each other’s activity, but in which the groups are
without influence upon each other. The number of these groups will increase with the
supersaturation. Each group can be assigned a strength s = 0, +1, 42, ..., according to the
excess of right-handed over left-handed screws in the group. A group of strength 0 has an
activity ¢ times that of a single dislocation, where ¢ is now approximately 1 and generally
slightly greater (the inactive groups of this strength have already been put into a separate
class). If the supersaturation is increased, so that p, decreases, ¢ tends rapidly to 1. When it
reaches 1 the group can be subdivided into two, of strengths s;, 5,, where s;+s, = 0. If the
dislocations are in random arrangement, |s; | will seldom exceed 1 or 2, but it must be borne
in mind that dislocations are likely to be in regular arrangements, as in mosaic or subgrain
boundaries, in which case this conclusion does not necessarily follow.
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Reduction of p, will also transform some of the inactive pairs into active groups of
strength 0.

Groups of strength s 4= 0 may have an activity up toe = | s | times that of a single dislocation.

With increase of supersaturation, diminishing p,, the groups of strength s subdivide into
groups of strength s,, 5,, where s, +s, = 5. Since s, and s, can be of opposite signs |s; | may
be larger than s. But with increasing supersaturation the groups are ultimately all sub-
divided into single dislocations behaving independently.

At every stage prior to this, there is in general some group more active than the rest.

The resultant activity is always that of the most active independent group.

10. Rate of growth from the vapour

Let us first consider the simplest case of one screw dislocation in an otherwise perfect
crystal surface. The rate of growth will then be given by (43), where v,, is the rate of advance
of the steps, far from the centre of the spiral.

The value of v,, has been calculated in I, formula (24), that is to say,

v, = 20x,vexp (— WIKT) tanh (y/2x,) foo 0, 9o), (46)

where ¢ is the supersaturation, x, the mean displacement of adsorbed molecules, v a frequency
factor, W the evaporation energy, y, the distance between successive turns of the spiral, f a
factor taking account of the fact that perhaps the exchange of molecules between the step
and the adsorbed layer is not rapid enough to maintain around them the equilibrium
concentration of adsorbed molecules, and ¢, another factor, which is a function both of y,
and of the distance x, between kinks in the steps, and given in general by formula (25), I.
According to the estimates made in I for x; and x, we expect the condition x, > x, to be satisfied
in most cases; then the factor ¢, is of the order of 1, and the rate of advance of the steps is
independent of their orientation. In this case, using (46) and (44) for the distance y, between
successive turns of the spiral, (43) becomes

R = fQnyvexp (—W/kT) (02/0,) tanh (0,/0), (47)
where o, = (2mp,/x,) 0 = 2myalkTx, (48)
(cf. I, equation (30)). For low supersaturations (0 <o) we obtain the parabolic law
R = fQnyvexp (—W/kT) 0?/o,. (49)
For high supersaturations (0> 0,) (47) becomes the linear law
R, = fQnyovexp (— WIkT), (50)

which corresponds to the case when «x is larger than the distance between successive turns of
the spiral. We see that there is a critical supersaturation ¢, given by (48), below which the
rate of growth is essentially parabolic, and above which it is essentially linear. For the typical
values y/kT ~ 4, x, ~ 4 x 1022 we obtain ¢, ~ 10!, In figure 8 we plot the factor

R[R, = (o]s,) tanh (/o)

as a function of ¢/, (continuous curve).
42-2
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In the case (an unusual one, we believe) when the condition x,>x, is not satisfied,
expression (47) has to be multiplied by the factor ¢,(a/c}, b) given by (cf. I, formula 25)

¢o(0/oy, b) = {1+26(4+Bo/s,) tanh (7,/0)} "},
where b = xy/2mx,, A =In[4bx/a(1+ (1+5%)%)], B =tan"'b.
xO/xs C(OO, b)

F""'"_—_“__—_; ————————— —= = 0

2
102 — — =
—_— P /-}1 0-950
o= — -
.//
0'/// 9,
0° ———~
-, 10 0-312
= U
x~7 T
) =7
& X
r i
5 10
ofoy

Figure 8. Correcting factor R/R, to the linear rate of growth as a function of ¢/o;. The numbers on
the curves indicate the values of x,/a.

For low supersaturations (o <<¢,) the parabolic law (49) will be multiplied by the factor
¢,(0,0) = (14-2bA4)71;

for high supersaturations (¢> ¢,), the linear law (50) will be multiplied by
¢o(00,b) = (1+2Bb)"1,

which can be included in the unknown constant /. The factor ¢,(0,4) is always smaller
than ¢,(00, b). The correcting factor {(¢/c,) tanh (¢,/0)} ¢o(0/oy, b) [co( 00, b) is also represented
in figure 8; for a given value of 4, 4 is also a slowly varying function of x,/a. We see that the
influence of the factor ¢, is important for x/x;>1, which we do not think will usually occur.
As xy/x, increases, the linear law is reached for higher values of ¢/s,.

~ Similar considerations apply to the rate of growth produced by a group of dislocations. If
the group is a balanced one (equal number of right- and left-handed dislocations, strength
s = 0) then there must be another critical supersaturation o, below which no growth occurs
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at all. o, will be defined by the condition 2p, = [, where [ is the maximum distance between
pairs of dislocations actually coupled by a step; therefore

oy = 2yalkTI. (51)

For an unbalanced group (strength s==0), or a balanced group above ¢,, the rate of growth

will be given by
R = Qnye(0) v, [4mp,, (52)

where the factor ¢(0) is of the order of magnitude 1 for a balanced group, but can be larger
for an unbalanced group; in both cases ¢(¢) tends ultimately to 1 when ¢ increases. Using
(46) (assuming ¢, = 1) and (12) for the distance y, between steps, (52) becomes

R = pQnyvexp (—W/kT)e(o) (¢%/0,) tanh [o,/e(0) o]. (53)

We see from this expression that, however large ¢(¢) is, R cannot surpass the linear law (50).
On the other hand, R cannot be smaller than (47) for an unbalanced group, but it could
become zero for a balanced group below the critical supersaturation g,.

In the general case of an arbitrary distribution of dislocations in the crystal face we expect
to have values for the rate of growth between that for a single dislocation (47) and the linear
law (50), according to the distribution occurring in the particular crystal considered.
A critical supersaturation o, of the type (51) could occur in some random distributions of
dislocations or a grouping of dislocations in balanced groups only; nevertheless, there is
evidence showing that the dislocations are distributed in a very irregular way, and groups
of dislocations of the same sign occur in mosaic or subgrain boundaries, in which case we
do not expect critical supersaturations of the type (51) to occur.

11. Comparison with experiment

There are few quantitative measurements of the rate of growth of crystals from the
vapour. The most interesting from our point of view are those of Volmer & Schultze (1931).
These authors studied very carefully the growth from the vapour of naphthalene, white
phosphorus and iodine crystals just below 0°C, under different supersaturations ¢ (from
1073 to 107!). For all three substances they found a rate of growth proportional to the
supersaturation. This linear law was valid for C;;Hy and P, down to the lowest super-
saturation used (~ 1073), but for iodine the rate of growth becomes smaller than that given
by the linear law when ¢<<10-2.

Let us first compare their linear law with (50) calculated in the preceding section for
high supersaturations. This formula is actually the same as that used by Hertz (1882) and
other authors (Volmer 1939; Wyllie 1949) for the growth of liquids and crystals from the
vapour; it can be written also in the equivalent form

R = fQpy(2nrmkT) o, (54)

as follows from the equality
ngvexp (—W/kT) = py(2mmkT) (55)

representing the balance between the current of evaporation and that of condensation at
equilibrium. £ in (54) is usually called the condensation coefficient, po is the saturation pressure
and m the mass of a molecule.
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In table 1 we compare the experimental linear laws obtained by Volmer & Schultze (1931)
with (54). The first column gives the average experimental value for R/s. The supersatura-
tion ¢ was obtained by maintaining a reservoir at 0° C and cooling the crystal under examina-
tion to a temperature —A7° C. Assuming that the vapour pressure between the two crystals
is uniform, the supersaturation at the growing crystal is ¢ = WAT/kT?. The second column
gives the theoretical values for R/fo from (54), taking for p, the values measuied by Gillespie &
Fraser (1936) for I,, by Centnerszwer (1913) for P, and by Andrews (1927) for C;,Hg. The
first row gives the Volmer-Schultze results for liquid Hg, for which careful measurement by
Knudsen (1915) showed that § = 1. For all the three molecular crystals, f<1.

TABLE 1. LINEAR RATES OF GROWTH R FROM THE VAPOUR AT 0° C,
AS FUNCTIONS OF SUPERSATURATION

R|o (exp.) R|pa (theor.) w v

(cm.[sec.) (cm.[sec.) '} (eV) (sec.”)
Hg (liquid) 0-66 x 106 0-6 x 10— 11 0-66 1013
I, 09 x10-¢ 3 x10-* 0-3 0-70 5x 10
P, 0-9 x10-° 0-8x10* 0-1 0-63 1015
CoH, 0-8 x 10~ 1-5x 10— 05 0-79 1018

The last two columns in table 1 give the values of W and v deduced from (22). For Hg
the frequency factor is of the order of the frequency of atomic vibrations, as we should expect;
in the other cases v is larger, due to the difference in rotational entropy between the crystal
and the vapour. ‘

Coming back to the deviations from the linear law, we notice first that P, and C;;Hy
follow the linear law to the lowest supersaturations observed. That means that ¢, is smaller
than 1073, and therefore, from (48), that x,> 10%. This is not surprising; in fact, the estimate
of x,/a made in I, equation (6), is valid for spherical molecules, for which the energy of
evaporation W/ of an adsorbed molecule was assumed to be of the order of $W; in the case of
a flat molecule like C,,Hg, we expect W to be larger, and therefore x,/a will also be larger.

Figure 9 gives the results (logarithmic scale for both axes) obtained by Volmer & Schultze
on several I, crystals. The experimental rates of growth are not reproducible even for the
same face of the same crystal; this is not unexpected on the basis of the present theory.

Assuming that the rate of advance of steps is independent of orientation (x,>x,), one can
choose a value for o, ~ 0-2 such that most of the experimental results are contained between
the rate of growth (47) of a single dislocation (continuous line in figure 9) and the linear
law (50) (broken line in figure 9). Taking o, ~0-2 and y/AT ~ 4, we deduce from (48),
x,~ 102 for 1, at 0°C, which is in reasonable agreement with what we should expect
(cf. I, equation (6)).

Nevertheless, one notices that the experimental rates of growth for the lowest super-
saturations are below the theoretical curve (47); in particular, the rate of growth at

7= 38X 10~3(AT = 0°:037)
is < 10~3 times the rate of growth given by the linear law. The reduction given by formula (47)
is only a factor ¢/o, ~ 5 x 10~2 with respect to the linear law. This fact could be explained

in a number of ways:
(i) Itisan obvious corollary to our view of crystal growth that it is susceptible to poisoning
by traces of impurity, particularly at low supersaturations at which the number of
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dislocations producing growth is smallest. From this point of view new measurements of
the rate of growth would be very welcome.

(ii) There may be a critical supersaturation of the type (51) of the order of ¢, ~ 1072, and
therefore the dislocations are about 1073 cm. apart; nevertheless, we are loath to draw this
conclusion from such slight evidence.

(iii) Of course, it would be possible to choose a larger value for ¢, in order to explain the
small rates of growth at the lowest supersaturations, but the corresponding value for x; ~ 6a

10

R (mm./hr.)

[ | ! [ | |
5.10° 102 5.10° 101 510" 1
g

Ficure 9. The rate of growth of I, crystals at 0° C as a function of ¢ (Volmer & Schultze 1931) in
a logarithmic scale. The broken line is the Hertz law with a condensation coefficient £ =0-3.
The continuous curve is the rate of growth of a single dislocation (formula (47)) with x, = 10%a.
The dotted curve is that of a single dislocation assuming x,= 10, x, = 103a.

would be too small. Another alternative is to suppose that the condition x, > x, is not satisfied
for I,. In order to decrease the number of degrees of freedom, let us assume that the condensa-
tion coeflicient £ is due only to the factor ¢y(o0,b). That fixes x,/x, ~10. Assuming for
x, ~ 10%a, one obtains the dotted curve represented in figure 9. As we said before we do not
think that a value x,/x, ~ 10 is actually possible. This point will be decided when the topo-
graphy of a crystal grown from the vapour is observed. If, as we believe, x,<x, the steps must
be circular, if x;>x, then they must follow the crystallographic orientation, as is observed
in the case of growth from solution (Griffin 1950; Frank 1950).

We have been considering the rate of growth of macroscopic surfaces, for which the
growth is due essentially to the molecules condensing from the vapour; in this case formula
(54) represents the maximum rate of growth for a given surface. When the dimensions of the
surface are small, diffusion of molecules from neighbouring surfaces can give an important
contribution to its growth, and the rate of growth may be substantially greater than (54).
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For instance, Volmer & Estermann (1921) studied the growth of small crystals of Hg at
—63° C. The crystals had a plate shape, the thickness 4 was not observable but was estimated
to be of the order of 10%a. The rate of growth of the edges was estimated to be 10° times that
given by (54). The ratio between the contribution to the growth from diffusion on the flat
surface and directly from the vapour should be 2x,/h. Therefore we deduce x;, ~ 105 for
Hg at 7" = 210° K, which agrees with the value that we should expect.

12. Growth from solution

We consider now, very briefly, the application of the preceding ideas to growth from
solution. Although it is clear that from a qualitative point of view there is no essential
difference between growth from the vapour and from solution, a quantitative theory of the
rate of growth from solution is much more difficult.

First of all, we expect the rate of advance of a step in the crystal surface to be a definite
function of the distance x, between kinks in the step, because although x, is always small,
the diffusion of solute molecules towards the kinks, either through the solution, on the
surface or in the edge of the step, is now much slower than on the free surface of a crystal. It
is difficult to decide the relative importance of these three currents. For instance, the ratio
between the current through the solution and on the surface will be represented by the
factor DNya/D,ny, where D and D, are the diffusion coefficients and N, and 7, the saturation
concentrations in the solution and on the surface respectively; it is likely that D> D, but
also Nya<n,,, therefore the factor above may be greater or smaller than 1. Nevertheless, for
the time being and in order to simplify the problem, we shall suppose that the contributions
from the diffusion on the surface and in the edge can be neglected. Even under these condi-
tions we find another difficulty in the fact that neglect of the motion of the sinks is no longer
generally justifiable.

Let us suppose we have a set of parallel steps, at distance y, from each other, in one of the
close-packed crystallographic directions (for which x, the distance between successive
kinks, is a maximum). As an approximation the diffusion through the solution can be broken
up as follows: At distances r<<x, from each kink we have a hemispherical diffusion field
around each kink (provided D/vy;, > x,, otherwise the movement of the kink cannot be
neglected) with the diffusion potential (1 —a/r) o(x,), where o(x,) is the supersaturation at
a distance x,; at distances 7 between x, and y, from each step we have a semi-cylindrical
diffusion field around each step (provided D/vy.,>y,) with the diffusion potential

[In (y0/%0] ! [(%0) In (go/7) + 0 (90) In (7/0)],

where o(y,) is the supersaturation at a distance y,; and finally, at distances z from the crystal
surface between y, and J, the thickness of the unstirred layer at the surface of the crystal, we
have a plane diffusion field with the diffusion potential [(z—y,) ¢+ (0—2) o(y,)] (0 —y,) 1,
where ¢ is the supersaturation in the stirred solution. The latter diffusion potential applies in
any case, but it would be improper to equate the flux calculated from its gradient to the rate
of growth R of the crystal unless D/R>d. Usually D/vy;n, D[y, and D[R are not very
large unless both the concentration and the supersaturation in the solutions are small. We
assume in the following considerations that this is the case.
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Under these conditions and in terms of the supersaturation o(x,) the rate of advance of

every step is clearly
Ve = DN, 210 (x,) [%,. (56)

Asuv,, is proportional to the number of kinks per cm., 1/x,, the velocity of the step will increase
appreciably as the inclination with respect to the close-packed slowest direction increases.

Equating the sum of the hemispherical fluxes going to all the kinks in the step to the semi-
cylindrical flux, and equating also the sum of the semi-cylindrical fluxes going to all the
steps in the surface to the plane flux, we eliminate o(y,) and find

o (%0) /0 = [1+2ma(8—yo) [%oyo+ (2a/%,) In (40/%0) ], (57)

which, introduced in (56), gives v,, as a function of x, and y,. v, will clearly increase when y,
increases.

Applying now formulae (43) and (44) for the rate of growth R and the distance between
steps y, of the growing pyramid, which will be approximately valid in our problem also,

we obtain
R = DN,Qac (x,) [2%0p, (58)

where 2p, = 2ya/kTo(x,) is the dimension of the critical nucleus and o (x,) is given by (57).
For low supersaturations the third term in the bracket in (57) is the important one; then
the rate of growth becomes parabolic. On the contrary, at high supersaturations, the second
term in (57) is the important one, and the rate of growth becomes linear:

R, = DN,Qu/s. - (589)
The change-over from parabolic to linear occurs at a supersaturation oy, roughly given by
oy~ yx,/kT0. (60)

For reasonable values of y and §, ¢; ~ 1073, Above ¢, one should observe only the linear law
(59); below ¢, all the rates of growth between (58) and (59) could be expected. As far as
we know there is no experimental evidence for such a critical supersaturation.

On the other hand, we observe frequently (Bunn 1949; Humphreys-Owen 1949) that
the rate of growth is substantially smaller than the linear law (59) would suggest; sometimes
a crystal surface does not grow at all in spite of the fact that it is in contact with supersatura-
tions as large as o~ 0-1. This could possibly be interpreted as being due to the absence of
dislocations in the surface or to the presence of so many that the mean distance between them
is smaller than 2p,. In this last case, the number of dislocations per sq.cm. would have to
be of the order of 10'2cm.~2, which is high. Moreover, in this case, the dislocations would
have to be distributed in a peculiar way, with least density at the centre of each face; for
otherwise the growth, when it did occur, would be most rapid at the corners, i.e. dendritic.
We are more inclined to think that the number of dislocations involved is quite small, and
that they are situated near the middle of the face. The changes in growth rate could be due to
rearrangements of the dislocations or to the effect of impurities adsorbed on the steps. The
required amount of such impurity is very small indeed. For example, if the number of
dislocations per sq.cm. is as high as 108, the number of atomic sites on the step-lines connecting
them need not exceed 10~* of all sites in the area. ’

Vol. 243. A. 43
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EQUILIBRIUM STRUCTURE OF CRYSTAL SURFACES

PArT ITII. STEPS AND TWO-DIMENSIONAL NUCLEI
13. Introduction

We begin with an outline of the theory to be developed in later sections. Some of the
statements made in this outline receive their fuller justification later.

It is clear that a crystal will grow only if there are steps of monomolecular height in its
surface, and growth will take place by the advance of these steps forming new molecular
layers. The rate of advance of the steps will depend on their structure when in equilibrium
with the vapour; hence the necessity for studying this structure as a preliminary to the study
of crystal growth.

Frenkel (1945) has recently shown that such steps, when in equilibrium at temperatures
above 0° K, will contain a number of £inks (cf. figure 11), i.e. molecular positions from which
the energy necessary to take a molecule from the crystal to the vapour is equal to the evapora-
tion energy W. This is true for intermolecular forces of a very general character, as has been
shown by Kossel (1927) and Stranski (1928). According to Frenkel, the proportion of
molecular positions in the step occupied by kinks is given by a formula of the type

e—w/kT’ ( 6 1)

where w is the energy necessary for the formation of a kink in the step. Our first purpose in
this part is to study in detail the structure of steps of any crystallographic direction and to
estimate the value of w. The concentration of kinks turns out to be in general considerably
larger than the concentration of adsorbed molecules in the edge of the step. We consider as
a working model a Kossel crystal, a simple cubic structure with first and second nearest
neighbour interactions. When the crystal is in real equilibrium with its vapour, a step in
equilibrium must be in the mean straight but can have any crystallographic direction.

On the other hand, if the vapour is supersaturated, it is known that there is a two-
dimensional nucleus (critical nucleus) which is in unstable equilibrium with the vapour.
Our second purpose in this part is to calculate the shape, the dimensions and the total edge
free energy of the critical nucleus in equilibrium with a given supersaturation at a given
temperature, for the particular case of a (0, 0, 1) surface of a Kossel crystal.

If one assumes that the crystal is perfect, its growth in a supersaturated environment
requires the formation of nuclei of critical size, because it is only when they reach this size
that they are able to grow freely forming a new molecular layer. Itcan be proved, on thermo-
dynamical grounds, that the number of critical nuclei created persecond must be proportional
to exp (—Ay/kT'), where A, is half the total edge free energy of a critical nucleus, which will
also be called activation energy for nucleation (Volmer 1939; Becker & Déring 1935). In the
calculation of 4, the previous authors neglected the configurational entropy, which amounts
to supposing that the shape of the critical nucleus is the same as it would be at 7"= 0°K.
Under this assumption, and for the simple case of a (0, 0, 1) surface in a Kossel crystal, the
size of the critical (square) nucleus and the activation energy 4, for nucleation are given by

kTIna=¢/l, A,= ¢*kT Ina, (62)
where « is the saturation ratio, defined as the ratio between the actual concentration in the
vapour to the equilibrium value, ¢ the energy of interaction between nearest neighbours and
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{2 the number of molecules in the critical (square) nucleus. Taking account of the entropy
factors, we show that the critical nucleus has essentially the same dimensions given in (62)
but has rounded corners, which decreases 4, only by a factor of the order of 0-8 in a typical case.
We deduce therefore that the activation energy for nucleation is enormous for the values of «
for which growth is observed (« ~ 1-01; Ay/kT ~ 3-6 x 103, for the typical value ¢/kT ~ 6),
and consequently the observed growth at low supersaturations cannot be explained on the
basis of a perfect crystal theory.

We believe that the observed rates of growth of crystals can only be explained by recog-
nizing, as has been suggested by Frank (Burton ef al. 1949; Frank 1949), that those crystals
which grow are not perfect, and that their lattice imperfections (dislocations) provide steps on
the crystal surface making the two-dimensional nucleation unnecessary. If the distance
between a pair of dislocations producing a step in the surface is such that a critical nucleus
can pass between them the step will grow freely. If that is not the case the step will require
a certain activation energy for growth. Using our preceding results we calculate this
activation energy, and we show that it is small only when the distance between dislocations
is practically equal to the size of the critical nucleus.

In part IV we shall consider the problem of the equilibrium structure of a crystal surface
not containing steps, in order to study whether thermal fluctuations are able to produce
steps in the surface, in the same way that they produce kinks in a step. The answer will
be no, provided the temperature is below a certain critical temperature, which for the more
close-packed surfaces is of the order of or higher than the melting-point. The problem of
the structure of a crystal surface is actually an example of a co-operative phenomenon.

14. Equilibrium structure of a step

By a step on a crystal surface we mean a connected line such that there is a difference of
level equal to an intermolecular spacing between the two sides of the line.

If the crystal lattice contains no dislocations, then there can only be two varieties of step
in the surface; either the step begins and ends on the boundary of the surface or it forms
a closed loop on the surface itself (thus bounding a monomolecular elevation or depression
on the surface). However, if dislocations are present, it is possible that a step can start on a
surface and terminate on a boundary, or it can have both ends in the surface. If a step has
an end in the surface, this end must be a place where a dislocation meets the surface with
a screw component normal to the surface.

For the sake of simplicity we shall consider a crystal in contact with its vapour, but many
of our conclusions will apply for other primary phases; also we shall assume the crystal to
be very large compared with the range of molecular forces involved, that is, we shall speak
of infinite crystals. We only consider, for simplicity, a (0, 0, 1) face of a simple cubic crystal
with forces between molecules of the nearest neighbour or possibly the nearest and next
nearest neighbour type. Finally, we neglect altogether the differences in frequency of
vibration and rotational free energy of the molecules in different positions in the crystal
surface.

If a crystal is then in stable equilibrium with its vapour (the vapour being neither super-
saturated nor under-saturated), then it is fairly clear even at this stage (and we prove this
later) that a step in equilibrium in the crystal surface will have a constant mean direction

432
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(this direction not necessarily being along a crystallographic axis), and hence under these
conditions no finite closed step can be in equilibrium. The latter will only be in equilibrium
when the vapour is supersaturated or under-saturated. In this case the equilibrium is
unstable. To avoid unnecessary circumlocutions we introduce here the saturation ratio «,
defined as the actual vapour concentration divided by the vapour concentration under
conditions of stable equilibrium with an infinite crystal surface. Summarizing, then, we
expect to find steps of constant mean direction (straight steps) if « = 1 and curved steps if
a==1, the two possibilities being mutually exclusive.

Ficure 10. Step at 7=0° K. Ficure 11. Step at 77> 0° K.

Ficure 12. Overhangs in a step.

Potential energy considerations show that at 0°K a step will tend to be as straight as
possible. This is shown explicitly in § 14-1 (figure 10). As the temperature is raised, a number
of kinks appear (+, —), separated by certain distances (figure 11); a certain number of
adsorbed molecules (4), and a certain number of vacant step sites (B) also appear. A certain
number of adsorbed molecules (C) also appear on the crystal surface proper. We shall see that
the concentration of adsorbed molecules and vacant sites in the step is small compared with
that of kinks. We require only the knowledge of the concentration of kinks to form a picture
of the structure of the step. The representation of the step by kinks, even when we admit
kinks of any height, is not capable as it stands of including such a feature as that depicted in
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figure 12, which we call an ‘overhang’; to this extent our treatment will be slightly inaccurate.
However, when the concentration of kinks is small, the concentration of overhangs will be
negligible.

In what follows, our unit of length will always be the intermolecular spacing. We distin-
guish two types of kinks, which we call positive and negative, corresponding to a ‘jump’
and a ‘drop’ respectively at the point in question (figure 11). We use the symbol #,,(x) to
denote the probability that there is a jump of amount 7 at a point whose co-ordinate is x.
Similarly for zn_,(x). We denote by ¢(x) the probability that there is no jump of any kind at
the point x. In the present case there are no geometrical constraints, i.e. at each point in
a step, any of the various possibilities can occur independently of what there is at any of the
other points. Hence the probability of the occurrence of a given configuration is equal to the
product of the probabilities of occurrence of the individual situations which make up
the configuration, and we may write as a normalization condition

Q(x) + rgl {n+r(x) +n-—r(x)} = 1. (63)
We define the local mean direction of a step at a point x by the equation

h(x) = tanf = 3 rin, (x) —n_(x)} (0<h<1), (64)
where ¢ is the smallest angle between the step and the [0, 1] direction. Our problem is now
to evaluate the equilibrium values of ¢(x), n,,(x) and n_,(x) as a function of the temperature
T, and also of the first and second nearest neighbour interaction energies ¢, and ¢,.

It is possible to prove in a number of ways (see appendix C) that the probabilities n and ¢
must satisfy the thermodynamical relations

Ger(%) = {8 (%)} 7370, (65)
8+(%) (%) = 1}, (66)
g (%) = £.(0) &™, (67)
where the g represent the relative probabilities _
Gur(¥) = nsy(x) [q(x) 5 (68)
we write g, for g, ;, and we use the notation
M2 = €xp (—¢y,5/2kT). (69)

We see, from equation (67), that if« = 1, and therefore the crystal is in thermodynamical
equilibrium with its vapour, all the probabilities are independent of x, and therefore, from
(64), the step will have a constant mean direction /. On the contrary, if a==1, the step will
be curved; its local mean direction is then a function 4(x) of position in the step.

14-1. Equilibrium structure of a straight step. Let us now consider in more detail the structure
of a straight step. Since there is now no dependence on x, we shall omit the variable from our
notation. From (63), (65) and (66), using the notation (68), we obtain by summing a

geometric series Lt otrd—g[l—rnd(2—n3)]
g+ (1—q) 73

g+t+8-= (70)
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In the same way, for a given mean direction 4 of the step, using (64), (65) and (66), we obtain

g+—8&- = hg(1—nin3)/[q+(1—q) 73]% (71)

where we have also used (70) to eliminate g, +g_.

From equations (66), (70) and (71) we can express ¢, n, and n_ as functions of 7,, 7,
and 4. Equations (65) then enable us to find n,, and z_, as functions of the same quantities,
thus completing the solution of our problem. The general expressions are complicated
and cumbersome, so we do not give them; instead, we consider some particular cases.

At T = 0, we get

gq=1—h, n.=h n_=0, n,=0 (r=1),

i.e. the step is as straight as it can be.

Before considering higher temperatures, let us see what typical values should be assigned
to ¢, and @,. In our model, the evaporation energy per molecule is W = 3¢, + 6¢,; assuming
W~ 0-7¢V (iodine for instance) and ¢,/¢, ~ 0-2, we have ¢, ~0-15¢V and ¢, ~ 0-03eV.
Thus at temperatures of the order of 300° K, we have 7, ~ 0-05 and 7, ~ 0-6. Accordingly,
at these temperatures, it is reasonable to assume 7, ~ 1, which amounts to neglecting the
effect of second nearest neighbours. Under these conditions the solution to our problem

becomes
¢ =1+ —{(14+75)>— (1—77)? A=) F]/(1—73) (1 —F?),)
2¢, = 1+7i—q(1—n}) (1—-A), (72)
2¢- = 1+7i—g(1—7}) (1+4).
For & = 0, that is to say for the (0, 1) step, equations (66), (70) and (71) give

g = 1—=7i73)[A+2n—mn3), n=n_=qn. (73)
At low temperatures we get
q=1-2n, n,+n_ =2y =2exp(—¢/2kT). (74)

The expression n, +n_ now represents the proportion of step sites occupied by kinks from
which the evaporation energy into the vapour is W. Thus, we obtain the same formula as
Frenkel (1945) for the concentration of kinks, the energy of formation of those kinks being
here w = }¢,. This value for w is, of course, equal to the increase in edge energy of the step
by the formation of a kink. Since w is small, we shall have a considerable number of kinks;
in fact, if 7'~ 300°K, ¢, ~ 0-15¢V, we shall have one kink for every ten molecules in the
step. The concentration of molecules diffusing in the edge of the step is much smaller than
that of the kinks, being in fact proportional to 7% which gives one diffusing molecule per
100 molecules in the step, if we use the above values for ¢, and 7.

As the inclination of the step increases (A>0) with respect to the [0, 1] direction, the total
number of kinks increases, because of the presence of kinks due to geometrical reasons;
actually 7, increases and n_ decreases in such a way that n, 4-n_ increases. For % very small
(h<27,), and at low temperatures, one deduces

2
n,+n_ =2y |:1 +877_%] (75)
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On the other hand, as we approach the [1,1] direction (% = 1), the positions in the step
from which the evaporation energy is I, are no longer the kinks of height 1 (probability . ),
because of the influence of the second nearest neighbour bonds. Consequently the
number of kinks with evaporation energy W reaches a maximum somewhere near £ = 1,
and decreases again being a minimum for the direction [1,1]. Actually, for the (1, 1) step
at low temperatures at which 7, and 7, are small, we obtain

g=1ny=1y=exp(—@y/2kT), n, =1-27,,.... (76)
Now the proportion of step sites from which the evaporation energy is W is represented by
qg+n,,. We obtain again a formula of Frenkel type with an energy of formation w = 1¢,
which is extremely small, much smaller than in the case of the (0,1) step. At higher tem-
peratures, for which 7, ~ 1, we obtain

_ 117 =1 2 R /s

q_“éi‘_T_‘;i'gl'a 72+——4(1~—7]1), ”~—'(1+’7%)2771a°"' (77)

It can now be seen why we have gone to the trouble of considering second nearest neighbours;

we have done so in order to obtain the correct behaviour at low temperatures for the
directions near (1,1). In fact for low temperatures (77) becomes

=1 -1 - — (Lyr+1
‘ g=4% n=4 n,=0, n,= (3",
independent of temperature.

14-2. Free energy of steps

It is of interest to evaluate the configurational free energy of a straight step. Using
standard methods (S = kln W, F = U— T, etc., W = number of ways in which kinks can
be arranged in a step) we obtain the following general expression for the edge free energy

per molecule: }
F = 3($1+2¢,) +2hd +kT (Ing+hing,), (78)

where, of course, g and g, are functions of z. This expression is referred to the [0, 1] direction;
in order to obtain the free energy per unit length of the step itself, we must divide the
expression by (14 A2)% ‘

In the general case the extended form of (78) is exceedingly cumbersome, so we again
consider some particular cases. For the (0,1) step at low temperatures the formula (78)
gives

Foy = §(41+2¢,) — 26Ty (79)
under the same conditions the corresponding quantity for the (1, 1) step is
By =¢1+¢,—2kT In (1+7,). (80)

The contribution of the entropy of the kinks to the edge free energy is small for the (0, 1)
step, but for the (1, 1) step it is not negligible. In fact, at temperatures for which 7, ~1,
formula (80) gives 257 In2 ~ 0-07, or a third of ¢,.

At reasonable temperatures the free energy is always smaller for the (0,1) step than for
any other, so we might conclude that steps other than the (0, 1) steps are not in real equili-
brium, and that there must be a tendency for these steps to change into (0, 1) steps. If the
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steps are infinite, this conclusion would be erroneous. Actually, every step is in equilibrium
with the same vapour pressure. Moreover, although the (0, 1) step has the smallest free
energy, there is no tendency for other steps to change their orientation, because even the
smallest rotation of step requires the transport of an infinite amount of material.

Frenkel (1945) has treated the kinetical problem of the transformation of any step into
a (0,1) step, assuming that only the latter are present in equilibrium, on account of the
higher energy of the former. He obtains in this way a time of relaxation independent of the
length of the step. This result is clearly incorrect, because the processes allowing a finite
step to change its orientation occur only at the corners; consequently the time required for
this rotation increases with the length of the step.

15. The two-dimensional nucleus: activation energy for nucleation

We have seen in § 14 that if the saturation ratio « is unity then the equilibrium steps are
in the mean straight. If <=1 we shall find that the equilibrium step forms a closed loop;
if «>1 the step bounds a finite incomplete layer of molecules on the surface, in which case
we speak of a two-dimensional nucleus, and if «<<1 the step bounds a finite hole in an
infinite incomplete layer.

The most obvious method for calculating the shape of an equilibrium nucleus would be
to use the free-energy formulae and Wulff’s theorem.* Although the use of Wulff’s theorem
is simple in principle, the details prove to be cumbersome. However, the results gleaned in
§ 14 enable us to find the shape directly.

We know that in general (see appendix C)

8+ (%) = g:(0) &™, (67)
and to complete the explicit determination of g as a function of x it is necessary only to

evaluate g(0). So far we have not specified an origin for x; let us now choose it to be the point
where the local mean direction of the step is (0, 1). Then, by symmetry,

g+(x) = g_(—x).
Hence, using (66), we obtain g.(0) =g_(0) =9,
so that with (67) we get gu (%) = 5,07 (81)
Invoking once more the normalization condition (63) we obtain
+ (m73)2 —mns(er +a)
X) = s 82
9% 1~Wiz(2 73) +m(1—73) (& +-a™) (82)

using (65) and (81). Itis now clear that our information on the structure of the step at every
point x is complete.
15:1. The shape of the equilibrium nucleus

The local mean direction %(x), and therefore the shape of a step in equilibrium with an

external phase of saturation ratio «, is clearly obtained from (4), using (21) and (22). In
Cartesian co-ordinates, the shape of the step is represented by the equation

y= j ") dx’,

* In appendix D we offer a new proof of a generalized Wulff’s theorem, which will be used later in § 16.
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where the origin is at a place where the local mean direction is (0,1) (see figure 13). Inte-
grating, we find

yIno =1In{(1—n i) (1—nmie)/(L—n78)* —§In [H(x) H(—x)[{H(0)}], (83)
where H(x) is given by
H(x) = {1 —nin3(2—nd)}e*+ i (1—n3) (@ +1).
The second term in (23) can be shown to be always small and negative; when 7, =1 it is

Zero.
The value of y in (83) becomes infinite when x = + }/’, where [’ is given by

KT Ing = (¢,+26) /! (a>1). (84)

Thus (83) represents a finger-shaped figure (figure 13). It is interesting to note that /'
coincides with the dimensions of the equilibrium or critical nucleus when a square shape is
assumed [§13, formula (62)] and ¢,<¢,.

[ i
| I
I I
| |
| |
I 1
! ; }
| l I
Ficure 13. Step in equilibrium with supersaturated vapour (¢,/kT ~6).

If in (83) we replace « by its expression as a function of I’ from (84), we see that y/I is
a function only of x/I’; hence the shape of the step is independent of a. The value of « fixes
the size of the figure. The shape is, of course, dependent on the temperature; at low tem-
peratures the ‘corners’ become sharper and the ‘edges’ straighter. At temperatures for
which 7, ~ 1 the expression for the shape can be written in the form
y/l' = (kT|$,) In{1 — [sinh (¢, x/2kT1") [sinh (¢, /4kT)]%}. (85)
- The figure we have obtained is not, of course, entirely correct, in the sense that we should
have obtained a closed figure. The reason is the neglect of ‘overhangs’ (figure 12), which is
not a good approximation when the inclination of the step is much greater than {7 with
respect to the (0, 1) direction taken as x-axis. Nevertheless, knowledge of the step shape in
a range im enables us to state the complete shape, because of the square symmetry of the
(1,0, 0) face of the simple cubic lattice. The diameter / of the nucleus obtained in this way
(see figure 13) turns out to be given by

kT Ina = (¢;+2¢,—4kT7,) /1, (86)
to the first order in 7,. The expression in parentheses is seen to be 2F;, (equation 79), Fy,

being the edge free energy per unit length of the (0, 1) step. This is the result that we should

Vol. 243. A. 44
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expect from a correct application of the Gibbs-Thomson formula (see appendix D), and it

shows that the shape we have calculated is a good approximation. The difference between

[ given by (86) and /" given by (84) is practically negligible for ordinary temperatures.
The radius of curvature p of the nucleus at the corners when 7, ~ 1, is easily shown to be

given by pll = —J(2) (kT|¢,) tanh? (§,/2kT). (87)

The rounding of the corners at high temperatures is considerable. For the melting-point
Ty, for which £T,,/¢, ~ 0-6, the nucleus would have practically a circular shape. According
to (87), the nucleus would become square at 7= 0° K. If second nearest neighbours are
considered the nucleus would become an octagon.

15-2. Activation energy for two-dimensional nucleation

It is easy to show how the activation energy for nucleation 4, is related to the total edge
free energy I of the critical nucleus. Let n be the number of molecules contained in a
nucleus, then n will be variable and will have the value 7, for the critical nucleus itself. Let us
suppose that the shape of the nucleus does not change appreciably for values of # around #,,.
Then the increase in free energy by the formation of a nucleus containing 7 molecules will

be A =—nkT Ino+fnt,
where £ is assumed to be a constant given by
F, = pnd.

Now 4 has to be a maximum for n = n;, because the critical nucleus is in unstable
equilibrium with the vapour of saturation ratio «. This condition fixes the value of

ny = (f12kT Ina)?,
and the maximum of 4 is equal to
Ay =ngkT Ina = LF,. (88)

The probability for the formation of a critical nucleus is then proportional to exp (—A4,/kT),
and 4, is called the activation energy for two-dimensional nucleation.

In the case of our (0,0, 1) face in a simple cubic crystal we know that by an application
of the Gibbs-Thomson formula (see appendix D) the dimension / of the two-dimensional

critical nucleus is given by KT Ine = 2F, /i (86)
- 01/%

where Fy, is the edge free energy per molecular position in the direction [0, 1]. The activation
energy for two-dimensional nucleation can then be written in the form

_ Iy (2F)*
=BTy (89)
Assuming that the critical nucleus is a square of size / and putting Fy; ~ $¢,, we deduce the
Becker-Doéring expression 4y = kT Ina. (62)

Formula (89) differs from (62) essentially by the factor 7y//?, the ratio of the actual area of the
nucleus to that of the square circumscribed on it. For the typical value ¢,/kT ~ 6 we obtain
graphically from figure 13 that 7y//>~ 0-86. This shows that the actual activation for
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two-dimensional nucleation is reduced with respect to (62) only by a small factor, which is
not sufficient to account for the observed growth rate at low supersaturations.

16. Steps produced by dislocations

As a final application of the generalized Wulff theorem (see appendix D) we evaluate the
activation energy for nucleation in the presence of screw dislocations.

A real crystal is supposed not to have a perfect lattice, but to contain a number of lattice
imperfections in the form of dislocations, and Frank (1949) has shown that when dislocations
having a screw component normal to the surface terminate in the crystal surface, they
ensure the permanent existence of steps in the surface during growth. Every dislocation is

B
i
§ a>1
i n l
4
i
p) d Dy
: / e - Pt \‘Q
1 ;I T \\
I 1 \
: | |
I I
[} ]
1 3
1 ]
[} '
1 ]
\ 1
\ 7
\ /
\\\ ///
Ficure 14. Step between two screw dislocations P Ficure 15. Equilibrium positions of a step
and @ terminating in the surface. between two dislocations P and Q: PAQ

stable, PBQ unstable.

the origin of a step, which finishes usually in another dislocation of different sign. Therefore
we must study the behaviour of a step between two screw dislocations of opposite sign.
A picture of the surface in this case is shown in figure 14. We shall suppose for definiteness
that the line joining the dislocations is in the [0, 1] direction, and we let the distance between
the dislocations be ¢ (figure 15). In real equilibrium (« = 1) the step will remain straight
between the two dislocations (figure 14), having the structure of a piece of step (0,1). If
a>1 the step will become curved (figure 14), and its shape, seen from above, under equili-
brium conditions, is the same as part of the shape of a ‘free’ nucleus passing through the
dislocations P, @ (figure 15). (Our calculations show in fact (appendix C) that the kink
density at a point in a step depends only on conditions in the immediate neighbourhood of
this point.) The diameter of this free nucleus will be /, given by (89) or approximately by
(62). If [>d, there are two possible equilibrium positions: PAQ which is stable, and PBQ
which is unstable. For growth we require the transition PAQ - PB(@, and the activation
energy A4, for this is half the edge free energy of the piece PBQ minus half the edge free
energy of the piece PAQ. This quantity is easily evaluated graphically. To find the free
energy of a piece of boundary we have merely to evaluate the area of the sector contained by
44-2
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the piece and the lines joining its ends to the centre of the nucleus, as a function of d// (see
appendix D). This we have done for ¢,/k7T ~ 6, and figure 16 shows the ratio of 4, to the
activation energy 4, for ordinary nucleation. The curve has a vertical tangent at [ = d,
which means that we have to go to values of / very close to 4 in order to obtain a reasonably
small value for the activation energy. Of course if /<d, the activation energy is zero. The
dotted curve in figure 16 is obtained if we assume that the free equilibrium nucleus is
a square.

Hence we conclude that given a certain saturation ratio , and therefore a value / for the
dimensions of the critical nucleus, all the steps connecting dislocations distant 4</ will not
move at all, and those connecting dislocations distant >/ will be able to move freely without
requiring an activation energy.

dfl
Ficure 16. Activation energy 4, for the growth of a step between
two dislocations a distance 4 apart.

PArRT IV. STRUCTURE OF A CRYSTAL SURFACE AS A CO-OPERATIVE PHENOMENON

17. Introduction

Following an idea put forward by Frenkel (1945), we discussed in part ITI the structure of
the edge of an incomplete molecular layer on a crystal surface, which we call a ‘step’. We
found that such an edge contains in equilibrium at temperature 7"a large number of ‘kinks’.
The results of this part enable us to describe the structure at a temperature 7" of surfaces of
high index, which contain steps even at the absolute zero of temperature. Frenkel appears
also to have concluded that a surface of low index, and thus flat at the absolute zero, would
acquire at a finite temperature a definite number of such steps. This we believe to be incorrect.
We shall show in this part that the problem of the structure of a surface is different from that
of a step, being actually a problem in co-operative phenomena. The result of our investiga-
tions is that a surface of low index will remain flat, and not acquire any steps, below a certain
transition temperature; above this temperature the surface becomes essentially rough,
a large number of steps appearing.

The problem of the structure of a step is actually one-dimensional ; we were dealing with
situations spread over a line. As we pointed out in §14, we could assign independent
probabilities for the existence of given features (kinks) at each point in the step, i.e. the range
of possible states at each point is independent of the states at all the other points. In the
two-dimensional problem which concerns us, this is no longer the case. This can be seen in
the following way.
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We are interested in the difference of levels between neighbouring molecules. If two
neighbouring molecules differ in level by » molecular spacings, we speak of a jump of magni-
tude 7. It is clear that the number of places where jumps can occur is greater than the
number of molecules in the surface; hence the probability of having a jump between two
given molecules cannot be independent of the jumps occurring in all the other positions.
Figure 17 shows a (0, 0, 1) surface of a simple cubic crystal. At 7> 0 the surface will contain
a certain number of jumps or differences of levels. The levels of the molecules can of course
be assigned independently; however, the jumps cannot. For suppose we trace out a closed
path ABCDEFA in the surface, then the magnitude of the jump at any point on the path
must be uniquely fixed by the magnitudes of the jumps at the remaining points on the path.

Ficure 17

We shall consider the surface structure problem as solved when the surface potential
energy at equilibrium is known as a function of temperature. For instance, if we consider
a simple cubic model with nearest neighbour interactions ¢, then a completely flat (0, 0, 1)
surface has a surface potential energy 44 per molecule. If, however, the surface contains
a jump of magnitude 7, then there will be an extra contribution to the surface potential
energy of amount §r¢. In general, we shall define the surface roughness s as (U—U,)|U,
where U, is the surface potential energy per molecule of the flat surface (7= 0) and U that
of the actual surface; s is equal to the average number of bonds per molecule parallel to the
surface. _ ~ : |
~ In the case of a (0,0, 1) surface in a simple cubic crystal, mentioned above, the problém
of finding U— Uj,, which we call the configurational potential energy, is seen to be equivalent
to finding the same quantity for a square lattice of units each capable of taking a range. u
of states, such that the energy of interaction between two neighbouring units is a certain
function u(u, ) of their states. In the simple case considered we have

u(p ') = 5¢ | u—p'| (p =0,+1,42,...). (90)

Our problem, then, is an example of the so-called standard problem of co-operative
phenomena in crystal lattices; given a lattice composed of identical units, each capable of
a number of states g, such that the energy of interaction between neighbouring units 4, j is
a function of ; and y;, what is the partition function per unit of the lattice ?

18. Co-operative phenomena in crystal lattices

It seems to be characteristic of co-operative problems that the thermodynamical functions
are non-analytic functions of the temperature; they thus possess discontinuities or infinities
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in themselves or in their derivatives. The temperature at which these singularities occur are
called transition temperatures. But this result is by no means generally proved. Itis conceivable
that in certain cases there will be a critical region where some of the thermodynamical
functions change very rapidly without having a singularity.

So far, only particular cases of the general co-operative problem in lattices have
been completely solved: those in which x is capable of two values only, and the lattice
is two-dimensional. The partition function is completely known only in the case of
a rectangular lattice with equal or different interactions in the two crystallographic
directions (Onsager 1944; Onsager & Kaufmann 1946). In this case a single singularity is
known to exist and its position is also known. Under the assumption that a single transition
temperature exists for any symmetrical (equal interaction in all directions) two-
dimensional lattice, its value is known (Wannier 1945), again with the limitation that x is
two-valued.

For our purpose, only the potential energy U is required. There are, in fact, several
approximate methods for finding U, the best known of which is that due to Bethe (1935).
These methods have been applied extensively (Wannier 1945) to the Ising model of a two-
dimensional ferromagnet. However, the rigorous solution for a rectangular lattice, due to
Onsager (1944, 1946), is qualitatively different from all the approximate solutions. In the
approximate methods both the potential energy and the specific heat can be discontinuous
functions of temperature; the correct treatment shows that both are continuous, but the
specific heat has a logarithmic infinity at a temperature some 10 9%, below that at which
Bethe’s method predicted a discontinuity. The reasons for this discrepancy have been
discussed by Wannier (1945). These results have thrown considerable doubt on the
predictions of approximate methods, especially when they predict a latent heat, i.e. that the
potential energy is also discontinuous. Broadly speaking, it is characteristic of these approxi-
mations that the calculated quantities are evaluated more accurately on the low-temperature
side of the transition temperature than on the high side.

The exact Onsager solution was applied to the case of a two-dimensional ferromagnet;
the same solution could be applied with little change to an adsorbed monolayer on a perfectly
flat crystal surface. It seems not unreasonable to suppose that the behaviour of a monolayer
will be similar to that of the crystal surface itself. Such an interpretation means that we
suppose that the molecules in the crystal surface are capable of two levels only. This means
that if we include adsorbed molecules or nuclei in the model, holes are excluded. The two-
level model of a crystal surface is undoubtedly an over-simplification, but it has the advantage
that we shall be able to use the results of Onsager’s treatment for several types of symmetrical
and unsymmetrical surface lattices (§19). The generalization of Onsager’s method to more
than two levels seems to be very difficult; hence, in order to study how the transition
temperature changes with the number of levels, we generalize Bethe’s method to a many

level problem in § 20.
19. Two-level model of a crystal surface

In appendix E we shall giveashort mathematical account of the interpretation of Onsager’s
solution from the point of view of our problem. In this section we shall state the results and

discuss their physical consequences.
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In the case of a two-dimensional lattice with z nearest neighbours and equal interaction
energy ¢ in all directions (symmetrical case), Wannier (1945) has shown that, assuming
there is a transition temperature 7, it will be given by the general formula

gdH, = mfz, H, = $[2kT, (91)
where gd is the Gudermannian function defined by

gdx=2tan~!e¢*—{nr=2tan"! (tanh lx).
In the simplest case of a square lattice (z = 4), (91) becomes
sinh H, =1,
kT,

f = (2Incotin)~! ~ 0-57. (92)

or 7, =¢ = /(2)—1~ 041,
1=

50'5—‘

|
0 1

U ]
Ficure 18. The surface roughness s of a square surface lattice as a function of 5 for a two-level model.
O, Onsager’s solution; B, Bethe’s solution; I, assuming no geometrical constraints.

In this case Onsager and Onsager & Kaufmann have found the exact partition function of
the lattice for all temperatures. The configurational potential energy per molecule U— U,
or the surface roughness s = 2(U—U,) /¢ (see §17) is found to be given by the formula

5= 1-%(1 —[—%szl) coth H, (93)
im
where K, = K(k)) = f [1—A?sin2e] du
0
is the complete elliptic integral of the first kind, and
2sinh H
— 2 —
k,=2tanh?H—1, k, = cosh?H *

A graph of s against 7 = exp (— H) = exp (—¢@/2kT) is given in figure 18. The curve possesses
a vertical tangent at the transition temperature given by (92). For low temperatures or
small 7, (93) becomes s = 47t (94)
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This result shows that at low temperatures the jumps existing in the surface are due essentially
to adsorbed molecules; in fact, the proportion of molecular positions on the surface occupied
by adsorbed molecules is 7* = exp (—24/kT") ; as every adsorbed molecule has four horizontal
bonds, the number of these bonds per molecule due to adsorbed molecules turns out to be
equal to (94). In an actual crystal surface there will also be vacant surface sites in number
equal to that of adsorbed molecules, therefore s should be 87*; the reason why (94) is only
half of that is, clearly, the assumption of a two-level model. In fact there will also be on the
crystal surface nuclei of adsorbed molecules and holes consisting of more than one vacant
surface site, but their concentration will be very small at low temperatures. Provided that is
so, they can be considered as independent entities, and their concentration is proportional
to 76 for nuclei (or holes) of two adsorbed molecules (or vacant surface sites) and to higher
powers of 7 for greater nuclei (or holes). As the temperature approaches the transition point,
the concentration of these nuclei becomes larger and they cannot be considered as inde-
pendent entities; the problem must then be considered as a co-operative phenomenon.

It is interesting to compare (93) with the result that we would have obtained if we had
assumed no geometrical constraints in the surface; it is easy to see that under these conditions

s would have been given by ‘
5= 27/(1+7), (95)

which is represented by the dotted curve in figure 18.
In the case of a triangular lattice (z = 6, close-packed plane) (91) becomes

exp 2H, = 3,
or 7, =1//3~058, kT [¢= (In3)~1~0-91. (96)

This value for the transition temperature was obtained directly by Wannier & Onsager
by an elegant method (Wannier 1945) assuming that a single transition temperature
exists.

Examples of square surface lattices are the (1,0, 0) face both in simple cubic and face-
centred cubic lattices. An example of a triangular surface lattice is the (1,1, 1) in the face-
centred cubic lattice. In all these cases the nearest neighbour interactionsin thesurfaceitselfare
the same as the nearest neighbour interactions inside the crystal. The transition temperatures
(92) or (96) for these surfaces are very high and seem to be of the same order of magnitude
or higher than the melting-point 7}, of the crystal. In fact, for the solid state of the rare
gases for which a nearest neighbour interaction model can be considered as a reasonable
approximation, we find from the experimental values kT},/¢ ~ 0-7. We deduce that these
surfaces, if the crystal is perfect, must remain essentially flat for all temperatures below
the melting-point, apart, of course, from the presence of adsorbed molecules and vacant
surface sites. - : . -

Another interesting case is that of surfaces for Wthh the nearest nelghbour interactions
in the surface itself are not only first but also second nearest neighbour bonds, as, for instance,
(1,1, 0) both for simple cubic and face-centred cubic lattices. Then the surface lattice is
rectangular and the interactions are ¢, (first nearest neighbour bond) in one direction and ¢,
(second nearest neighbour bond) in the other direction. The exact partition function for this
lattice has also been given by Onsager (1944). He has shown that the potential energy (or our
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surface roughness) follows a curve similar to figure 18, with a vertical tangent at a transition
temperature given by

sinh H, sinhH,, =1,  H,, = ¢,/2kT., H,, = ¢,/2kT..

This formula can be written in the form

¢ 4T, 4y

Figure 19 gives £7}/¢, as a function of the ratio ¢,/¢, between bond energies. We see that
for a given ¢, the transition temperature decreases rather slowly as ¢, decreases; it is only for
ratios of the order ¢,/@;, ~ 0-1 that 7, is smaller than (92) by a factor }. This is probably the
case for homopolar crystals. Thus the transition temperature for these surfaces should be of
the order of one-half of the melting-point. It could be interpreted as a surface melting of
second nearest neighbour bonds.

Qk—T‘lncoth b b, (97)
1

0-5

ch/¢l

l |
0 05 1

b2l

Ficure 19. Transition temperature for a rectangular unsymmetrical lattice as
a function of the ratio between the bond energies in both directions.

Finally, in the case of surfaces containing only second nearest neighbour bonds, as, for
instance, (1,1, 1) for simple cubic crystals, the transition temperature (7) is much lower; it
is of the order of ¢,/¢, times the melting-point. At ordinary temperatures these surfaces
would therefore be above their transition temperature.

The configurational surface free energy is, in all cases, very small below and at the transi-
tion temperature. Above this temperature it decreases roughly linearly with rise of tem-
perature, the slope being —£kIn2 approximately. Therefore the differences in surface free
energy between the different faces of a crystal will decrease more and more as the temperature
rises and the critical temperatures of the high index surfaces are surpassed, since high index
faces have higher surface energies but lower transition temperatures.

The existence of a transition temperature, when it is below the melting-point, should have
an observable effect on the adsorption properties of the surface, which clearly depends on
the surface roughness. Actually the presence of adsorbable substance will change the
equilibrium structure of the surface itself, and its transition temperature. We hope to treat
this point in detail elsewhere. Meanwhile, a possible experimental method of testing the
existence of a transition temperature would be to prepare, say, a metal crystal with one of

Vol. 243. A. 45
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its less dense-packed surfaces exposed, anneal at various temperatures in vacuo, quench and
test the adsorption properties of the surface. A sharp change in the latter would be expected
when the annealing temperature crosses the transition temperature of the surface.

Similar considerations would apply to the influence of the catalytic properties of the surface
of some solids on the kinetics of chemical reactions between adsorbed substances, in the cases
when the catalytic activity is restricted to ‘active’ points on the surface. Frenkel (1945)
suggested that these ‘active’ points should be identified with the presence of jumps on the
surface, assuming that the adsorption of the reacting molecules in the edge of the steps
decreases the activation energy for their chemical reaction.

On the other hand, the existence of a transition temperature will not have any influence
on the kinetics of growth of the crystal surface. It would if the crystal were perfect. Below
the transition temperature the only mechanism of growth would be a two-dimensional
nucleation, which we know (part III) isalways a very slow process at low supersaturations.
Above the transition temperature the growth will be proportional to the supersaturation.
Actually the fact that real crystals are imperfect guarantees the presence of the steps required
to explain the observed growth at low supersaturations and below the transition temperature;
Frank (1949) has shown that, during growth, a dislocation or group of dislocations termi-
nating in the surface sends out closed loops of step in such a way that at any instant the
surface is covered by a very high density of steps, practically independently of the number of
dislocations present (provided there is at least one). Therefore, even if we observe the growth
of a surface for which the critical temperature is below the melting-point, there would hardly
be any difference between the rate of growth below and above the critical temperature.

20. Many-level model: Bethe's approximation

The two-level model of a crystal surface is clearly an over-simplification. We expect that
with a many-level model, which corresponds to the actual crystal surface, the transition
temperature should be lowered. In order to study this point we extend in this section Bethe’s
method to our many-level problem. In this method we assume that in a given region,
arbitrarily chosen, the probabilities in which we are interested are independent; we then
insert correction factors to take account of the geometrical constraints, and attempt to
evaluate them by the requirement of self-consistency.

We shall limit ourselves, for simplicity, to the study of the structure of a (0, 0, 1) surface
of a simple cubic crystal. Figure 20 shows a group of five molecules in the crystal surface,
whose levels are i, j, k, [, m (at T =0 we would have i =j=#k=1[=m=0). Let the
probability for this configuration be p(1;J, k, [, m), p not being normalized. We assume that

ﬁ(i;j, A m) — ”li—jl+|i—kr+|i—l|+li—ml€(j‘) €(k> e(l) e(m), n = exp (_2_?71), (98)

where ¢ is as usual the nearest neighbour interaction. The factors containing 7 represent the
Boltzmann factors, and the functions ¢ are the correction factors which take into account
the influence of geometrical constraints of the outside region on the molecules considered.
The factors ¢(x) will be less than unity unless x = 0; in this case we take ¢(0) = 1. The level
zero corresponds to Bethe’s ‘right atom’, the other levels to different kinds of ‘wrong atoms’.
By symmetry, ¢(x) = e(—x).


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE GROWTH OF CRYSTALS 341

The total probability p(x), for the central molecule to be at the level x, whatever the values
of j, k, [, m, is .

p) = 3 plasiklm) =Y, (99)

where %) = SqtIle(j), (100)

J
and the summations are carried out over all possible levels. Clearly f(x) = f(—x). Following
Bethe, the self-consistency condition is that the probability p(x) for the central molecule to
be at the level x must be equal to that for one of the molecules in the outer shell to be also at
this level. Therefore () can also be written as

p) = X plisxklm) = e(x) 2" Q)Y (101)

i, klm

where we have used (98) and (100). Hence from (99) and (101) we obtain

JH) = e(a) Zp730, (@) =)} (102)

Ficure 20

The correction factors ¢(x) have to be determined from the equations (100) and (102).
Now if we divide (102) by f3(0), use (100), and introduce the functions g(x) = [ f(*)/f(0)]3,
the equations (102) transform into the system of linear equations

gx) 2y le(d) = e(x) X' lg(0),
which have the only solution
6(x) = g(x) = [f(x) [f(0)]°. (103)
This form of the conditions that ¢(x) must satisfy is very convenient for numerical calculations.

The potential energy U, and therefore the surface roughness s = 2U/¢, can also be written
in a general form. In fact, the energy corresponding to the configuration of figure 20 is

i+ li—k|+]i=l]+|i-m]},
and therefore the potential energy per molecule U of the surface will be

U=39 S 0057,k L) ’

(104)

where the summations are carried out over all values of ¢, j, £, [, m. Using (98) and (100)
the potential energy or the surface roughness can be written in the form

5= %;;%1@ 1), (105)

45-2
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where the use of the sign of partial differentiation is to indicate that ¢ is to be treated as
constant during the differentiation. Once the ¢(x) are known from equations (103) the
surface roughness factor is determined from (105).

20-1. Two-level problem

Let us first consider, as an introduction, the two-level case, which is the problem initially
considered by Bethe (1935). In this case, from (100) (z = 0,1),

J0) =1+em, f(1)=¢+n;  €0)=1, ¢(1)=c¢,

and formula (103) becomes Bethe’s equation

_(a+n)?
€ = (1+617]> , (106)
1
6‘0_5m
0

Ficure 21. Bethe’s factors ¢ for the two, three, and five levels.

giving ¢, as a function of 5. Figure 21 gives ¢; (curve 2) as a function of . ¢, is smaller than
1 only for values of 7 smaller than 0-5. Above 7 = 0-5 the only solution of (106) is ¢, = 1.
The temperature corresponding to 7 = 0-5 has been interpreted as the transition temperature
of the corresponding co-operative phenomenon:

7, = 05, kT.J¢ = (2In2)~1~0-72. (107)

This value is higher than the value £7 /¢ ~ 0-57 (92) given by the correct treatment of
Onsager. On the other hand, the fact that ¢, = 1 above 7 = 0-5 cannot be interpreted from
a physical point of view, and shows only that the method is not correct. Actually ¢, =1
means, from the point of view of our problem, that the geometrical constraints have dis-
appeared above the transition temperature, and this is obviously impossible. According
to the definition of the factors ¢, they must be smaller than 1 at all temperatures.

The surface roughness is now given by

5 4¢.7 1
C14et 14ep°

(108)
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For low temperatures, s = 47%, the same expression as is given by Onsager’s treatment.
Above 7 = 0-5, 5 is given by formula (95) corresponding to the hypothesis of independency
of the probabilities or ¢, = 1. The expression (108) has been represented in figure 18, for
comparison with Onsager’s result.

20-2. Three-level problem

The simplest many-level problem which corresponds to the structure of a crystal surface
is the three-level problem. In this case, using (100) (¢ =1,0, —1), '

A0) =14267, f(1) =f(—1) =g+e(1+9%);  ¢0) =1, e(1) =¢(—1) =,

2..._
S
1_.
0
T, £T
¢ ¢

Ficure 22. The surface roughness s for a three-level and five-level problem,
as a function of £ T/¢.

The general formula (103) now gives the equation

7+ (1+79%) :l
o= I: 1+ 27¢, (109)

for the calculation of ¢, as a function of 7. The result is represented in figure 21 (curve 3).
In this case ¢, = 1 is not a solution of (109) for any finite temperature, as we should expect
on physical grounds. On the other hand, ¢, has no singularity allowing the definition of a
transition temperature. To decide where this transition temperature is we must wait till s
is known.

The value of s is easily calculated from (105):

_ 816 1+ey
142681+ 2¢,7°

(110)

The result is represented in figure 22 as a function of £ 7'/¢ ; the curve has a point of inflexion

at a temperature given by
7, =045, KT;/¢~0-63. (111)
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This temperature can be interpreted as the transition temperature of the three-level problem.
Itis substantially lower than the transition temperature corresponding to the two-level Bethe
problem, but still higher than Onsager’s value. The derivative of s with respect to 7" (which
would correspond to the specific heat in our problem) would have a maximum at this
transition temperature, but not a singularity.
At low temperatures (110) becomes
5 =8y 49

which represents the jumps due to the presence in the surface of adsorbed molecules and
vacant surface sites, which were not allowed in a two-level model. At high temperatures s
becomes now larger than 1 (in fact, its maximum value for y = 1 is 1-8). The reason for that
is again that we have now the possibility of jumps of height 2 intermolecular distances, and
therefore the number of bonds parallel to the surface per molecule (equal to s) can now be
greater than 1.

20-3. Many-level problem
It is interesting to see how the surface roughness behaves with increasing number of levels.
In the case of five levels, one obtains the equations '

. :(77+(1+772)61+77(1+772)62)3 . :(772+77(1+772)€1+(1+774)€2)3 (112)
! 1+ 27¢; +29%, > 2 1+ 2pe¢, + 29%,

for the calculation of ¢; = ¢(1) = ¢(—1) and ¢, = ¢(2) = ¢(—2). The surface roughness s is
given by

s 87 eitn(ei+2e,) + (14377 6,423 (113)

T 1426+ 268 1+ 27¢, + 2%,

The values of ¢, and ¢, are represented in figure 21 as functions of 7 and those of s in figure 22
as functions of £7/$. The curve s has again a point of inflexion, defining the transition
temperature at a value of £7,/¢ which cannot be distinguished from (111). The inclination
of the tangent increases and hence the height of the maximum for the derivative of 5. We
notice that the difference in behaviour between three and five levels is rather small from the
point of view of the location of the transition temperature. The reason for that is that the new
parameters ¢ which we introduce to represent the new levels are very small in the neighbour-
hood of the critical point. ,

The calculations can be carried on to any number of levels. In the vicinity of the transition
temperature there is practically no further change. Also the parameters ¢ do not become 1,
at any rate for temperatures for which 7 < 0-8, in spite of the fact that for an infinite number
of levels ¢(x) =1 is a solution of equations (100) and (102).

The change in the value of the transition temperature, according to Bethe’s method,
occurs therefore at the passage from two to three levels. Although we also expect to have
a decrease in the correct transition temperature, when the number of levels is increased, we
do not know whether this decrease will be as substantial as it is in Bethe’s approximation,
owing to the anomalous behaviour of the two-level problem in this approximation.
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APPENDICES
APPENDIX A. INFLUENCE OF THE MEAN DISTANCE X, BETWEEN KINKS ON
THE RATE OF ADVANCE OF STEPS
Al. Single step

We suppose the kinks to be regularly distributed on the step at distances x, from each other
(figure 28). Let us suppose D, is independent of direction in the surface; we have to solve

equation (14) or RV =y, =0—0, (A1)

with the boundary condition ¥ = 0 for y = 4 0c0. We suppose also that there is a current in
the edge of the step, governed by the diffusion constant D,, which is large enough for the
current passing directly from the surface to the kinks to be neglected. Since ¥ must be
periodic in x, with period x,, the required solution of (A1) is

U(x,y) =g S ¢ ¥ cos k x5 k, = 2mn[x,, 2= x;24k2. A2
n n n 0

n=0

—Q

1
R Y T Ty

A

\L-}--l

Zo

- emercnfiocs e mectweben - - e,

- emews s nmww w -l eccctm e e re e e SRR S

TTTTTTTTTHR

[

&
U S,

Ficure 23. Step (y=0) with kinks at a distance x, from each other.

The minus sign corresponds to ¥ >0, and the plus sign to y <0; the coeflicients ¢, have to be
determined. The current going into one kink (x = 0 for instance) will be equal to the current

J = Diny(09/09) 4o
going from the surface to the edge integrated between — 4, and 4x,. The velocity of the step
will then be the result of the current going into all the kinks, and turns out to be
Ve = 20x,vexp (— WIkT) fc,, (A3)
which is the general expression (19) given in §4. We have now to calculate the factor ¢,.
In the edge of the step we shall have a supersaturation ¢, and an expression §, = ¢ —o0,,
which will be a function of x. In general, ¥ (x,0) = f§,¥,(x), where §, <1 is a retarding

factor similar to (17). If the interchange of molecules between the edge and its immediate
neighbourhood is rapid, f;, = 1. Hence

biv.(x) =of %cncos k,x. (A4)
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Near the kinks (x = 0 for instance) we shall have ,(0) = f,0, where f, is another retarding
factor corresponding to the interchange between edge and kink. Putting £ = f,/,, we have

the condition o
> ¢, =1. (A5)
n=0

The current in the edge passing through the point 4 (figure 23), whose co-ordinate is x,

is given by o
.].e = _De(dne/dx) = ~Deneoo-ﬂ2 gocnkn Sin knx? (AG)

where (A4) has been used. On the other hand, this current must be equal to that going from
the surface to the edge between x and }x,, that is to say

S (e lufk)sink,x |, (A7)

n=1

$xo
2D,y [ (09109) 0t = —2D,10 08 co(bosgm 5 — )1, —

where sgnx is 1 for x>0, —1 for x<0 and 0 for x = 0. Equating (A6) and (A7) we obtain
the coefficients ¢,(n>0) as functions of ¢,:

cul6o = (4bc[n®) [1+ (2¢/n) (14-b2/n?) ]}, (A8)
with the abbreviations '
b=x,/2mx, ©¢=x,a/2mx, x2= D,n,a/Dnyf. (A9)
From (A5) and (A8) we obtain
1/cy = 1+ 4be §l (n2[1+ (2c/n) (1+b2/n2)iT}1. (A10)

The series in (A 10) can be approximated to by an integral

ng 0T+ (3ef) (1 B )1 = 01 1 +2cx(a;x+ bt

which can be evaluated using the transformation tan # = bx. The final result for ¢, is

L 1 200(B ) (31 ) 5 ) (A11)

0
where  fi(x,u,) = 2(x—1) 7 tan" u,, (5] — 1)/ (¥, — )},
Salg 1) = (1—8) " In{(u,, (14 (1 —3)*) + )/ (w,, (1 — (1 —23)") +25)},
w, = b[{14+ (14021}, x; =c/b+ (b2 +1)'>1, xy=—c/b+(c?/b>+1)I<1.

For x,->00, we obtain the result for widely separated kinks; it is easy to see that ¢, is then
proportional to 1/x,, or to the number of kinks per cm.

The method used to calculate the current going into the kinks is correct, provided the
current via the edge is important or x,>a. In the limiting case when x, ~ a the result of this
calculation should be the same as if the current via the edge were neglected altogether. In

§ 4 we have seen that x, is of the order of a; under these conditions, and assuming x,>a and
x,3>>a, one obtains from (A9) that ¢>1 and ¢/b>1; then, the rather complicated expression

(A11) reduces to 1/eo — 1+261n {de/(1+ (162}, (A12)
which is the formula (21) of § 4.
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A2. Parallel sequence of steps

We suppose the steps and kinks are disposed as in figure 24, the kinks forming a rectangular
lattice. Let the distance between kinks be x, and that between steps y,. Between steps the
same continuity equation (A1) holds. Again we have periodicity in the x-direction, hence
N .
in the interval ~Ho<y<do —Iro<r<dr,

) ®  coshl,y
we have the solution Y(x,y) =of 2_:0 C"E_os—h%_l;y—o

cos k,x, (A13)
where £, and /, have the same significance as in (A2). The velocity of every step will be the
result of the current going into every kink, equal to the current going from the surface to the

step in the range x,. The velocity turns out to be
Vo = 20x,ve~ kT tanh (yo/2x,) feos (A14)

which is the general formula (24) given in §5. To calculate ¢, we have again the condition

e, =1 ‘ (A15)
n=0
as before. To evaluate all the ¢,(n> 0) as functions of ¢, we use the same method asin §A1,
and from (A 15) we deduce for ¢, the rather complicated expression

1/cy = 1+ 4bctanh (y,/2x,) é {n2[1+4 (2c/n) (1+b%/n?)} tanh ((n/2e) (1 +5%/n2)H)]}"1, (A16)

where b and ¢ are given by (A9) and

€ = Xo/2mY,. (A17)
Y
/ H '
o : 4 ' o
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Ficure 24. Sequence of steps distant y, from each other with kinks distant x,.

In the limiting case when x, ~ a, and therefore ¢> 1, the series in (A 16) can be approxi-
mately evaluated, replacing the tanh x by x/(1+x). The approximated result is

1/¢y = 142b tanh (y,/2x,) [In (4¢/(1 + (1 +52)1)) + (2¢/b) tan~1 5], (A18)
which is the formula (25) given in §5.

APPENDIX B. THE MUTUAL INFLUENCE OF A PAIR OF GROWTH SPIRALS

We now reconsider, in more detail, the interaction of the growth spirals of a pair of
dislocations (like or unlike) whose separation is at least a moderate multiple of p,. We have
seen (§9-1) that their resultant activity will equal that of one dislocation except in so far as

Vol. 243. A. 46
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influences transmitted along the step from the point of meeting modify the rate of rotation
of the separate spirals. To examine this effect we first consider a simpler case.

A circular expanding step, whose position is defined by r = r,(¢), is helped on over a small
portion of its length, e.g. by meeting another small closed loop of step (a small island nucleus).
Re-entrant portions of the curve fill in rapidly, so that we then have r = r,(¢) 4+ (0, t), where
f is the angular polar co-ordinate and ¢ the time. We suppose f small compared with 7,, and
dr/08 = r" small enough for its square to be neglected in expressions for curvature (35) and
normal velocity (36):

p = (r2+2r"2—r") (412"~ 1fr—1"[12 ~ 1 [r, — 0%f]0s2,
v = (0r[dt) r(r2+1'2) "t ~ Jr[dt = Or,[0t+ df]0.
Here s is the arc distance 0. By equation (34) we have then
0r,[0t 4 0f [0t = v, — Voo p, 11 + Ve p, 0% 052

Subtracting the corresponding equation obtained when fis zero, we have

af %f

o~ VePegg

This is simply the diffusion equation, with an effective diffusivity v,,p,. Whatever the initial
form of f, provided it is confined to a small portion of the circumference and disregarding the
closed nature of the curve (as is right, since we are going to apply the result to a spiral instead
of a circle), its solution tends rapidly to the form

f= Aldmp,0,8) exp (—s2ap,v,1),
for which J- fds has the constant value 4. Thus the growth increment remains constant in

area but gradually spreads out along the step.-

This result should be approximately valid for deformations of the spiral also, except close
to the centre, where 7’ is no longer negligible. We apply it, then, to a growth spiral which,
once in every turn, meets another based on a dislocation a distance / away. Each time this
happens the resulting concave region of the growth front fills up rapidly, making an area of
increment which we estimate roughly as (4 —7) /2/8 from the difference in area between two
circular quadrants and a rectangle. This occurs w/27 times a second at a distance, measured
along the step, approximately /2/16p, from the dislocation. These growth increments now
diffuse along the step, but at the same time the spiral continues to rotate, so that while the
increment spreads, its centre recedes from the dislocation, the arc distance being expressible

approximately as s = p.(U/4p,+0t)2.

Near the centre of the spiral the concept of an area diffusing along a line fails; the growth
increment which diffuses into the centre is used up in extending the step line faster than would
occur spontaneously.

Supposing the diffusion law continued to hold as far as the centre of the spiral and on
some fictitious line beyond it, the value of f at this point resulting from one meeting of the
growth fronts at a time ¢ = 0 would be approximately

Ja= (4 7) B[16(np, 00 1)} exp [ p, (147, + 1) 40,1].
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This is zero for small or large £, and has a maximum very nearly at the maximum of the
exponential factor which occurs at ¢ = [/12wp,. Inserting this value of {, and at the same time
writing o = ev,,/2p,, where ¢ is a factor representing the increase of rate of rotation over that
of an unperturbed single spiral, we have.

Ja max. = [(4—m)[16] (6el[mp,)* exp [ — () (I/3p,)*]-
We may alternatively focus attention on the area of incremental growth which would have
diffused past the centre, on the same assumptions. This is

F, = [(4—m) 2[16] exfe [(1/4p, +l)? (40, tp,) ],
where erfc (x) is the complementary error function 1—erf(x). As a function of time this
has its maximum value at ¢ = [/120p,, and is then ’ '

By max, = [(4—m) E2[16] exfc [($e)* ({/3p.)'].
Consideration of either of these expressions, f; ... OF F, .y, suffices to show that the
influence transmitted into the centre is quite negligible if / much exceeds 3p,.

For variations of //p, the first of these functions is a maximum precisely, the second very
nearly, when (let/3p,) = 1. The corresponding maximum values are 0-234p, and 0-155¢~#p2.
We may crudely estimate the order of magnitude of the amount of extra rotation produced
by such an increment by dividing by 27p, in the first case or mp? in the second, obtaining 0-037
or 0-049¢~# of a turn. This occurs once in every turn, i.e. € ~1-04 or 1-05. This result is not
directly valuable, for the maxima occur at a separation too small for the validity of approxi-
mations used in the treatment; but it does show that at greater separations where the
approximations are reasonably valid (say />4mp,) the interaction is quite negligible.

The calculation affirms the surmise that when p, is steadily reduced below the critical
value 3/ above which the activity of an unlike pair of dislocations is zero, the activity first
rises above that of a single dislocation before settling down to equality with it; but it leaves
much doubt as to the actual magnitude of the maximum excess. It is probably a few units
per cent, and if it later turns out that importance attaches to the actual value, a step-by-step
trajectory calculation must be carried out.

APPENDIX C. PROOF OF CGERTAIN FORMULAE IN THE STATISTICS OF KINKS

To prove formulae (65), (66) and (67) in the text, we consider particular processes
(figures 25, 26, 27, 28) and we apply the principle of detailed balancing.

.~ _— -3
e ~——— 3._.._
Ficure 25 Ficure 26

PR ]
;._____[__3{ — . ; — ;,_J;__]_E

Ficure 27 Ficure 28

we
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Let us first consider the process shown in figure 25. The molecule denoted by a square is
the one which moves. The positions in the shaded regions are supposed to remain the same
during the process. In this case the energies of the two configurations are the same, so the
probabilities for their occurrence are equal. Hence

(%) g 1) n (8 2) = nyo (%) nyp(x+1) g(x+2). (C1)

Here we have written z, for n,,. Later we write g, for g,,. It is convenient to introduce a

function defined b

: cmee oy 8ar(¥) = (%) [8(x).- (C2)
Then (A1) can be written

8:r(%) 84(x+2) = gi6-p(#) gaa(¥+1). (G3)

For the process of figure 26, we need to supply an energy ¢, in going from the left-hand to the
right-hand diagram. Hence

Gia(x+1) = g,(x) g, (x+2) 73, (G4)
where we have again used (C2) and also the abbreviation
M,2 = eXp (—@,o/2kT). (C5)
Substituting the value (C4) of g, ,(¥+1) in (C3) we obtain
84r(%) = {8 (R} 730, (G6)

as is easily shown by induction on 7. Formula (C6) is formula (65) of the text.
We now need an equation relating neighbouring positions. Comparing (C4) and (C6)
(r = 2) we obtain, immediately,
{g:()f =g (x—1) g (x+1). (C7)
From the process illustrated by figure 27 we obtain
ge(x+1) 73 =g, (%) g_(x+1) g, (x+2),
and using the property (C7) we obtain

. _ 8+(x%) g-(x) =113, (C8)
which is formula (66) in the text.
The general solution of the functional equation (C7) is easily proved to be
g+ (%) = g.(0) e, (G9)

where g,(0) and ¢ are arbitrary constants. We now investigate the dependence of the
constant ¢ in (C9) on the supersaturation, or more specifically the saturation ratio « defined

by the equation N = aN, = a(g, )" (C10)
Here N is the occupation probability for an adsorbed molecule on the surface, and

Ny = exp{—2(¢,+¢,) [k T}

is clearly the value of N when « = 1. Since we are speaking of equilibrium, ¥ is independent
of position in the surface. From the process represented by figure 28 we obtain

N =g. (%) g-(x+1) nins (G11)
and combining this result with (C8), (C9) and (C10) we obtain
a=e"°,
and therefore (A9) becomes 8+(%) = g4(0) a7, : (G12)

which is equation (67) given in the text.
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AprpEnDIX D. WULFF’S THEOREM

‘In a crystal at equilibrium, the distances of the faces from the centre of the crystal are
proportional to their surface free energies per unit area.’

A great deal has been written on the general form of this theorem, and von Laue (1943)
has given a critical review of the subject. There is no really satisfactory proof of the three-
dimensional Wulff theorem even now. The proof for the two-dimensional case given here is
believed to have merits not to be found in any earlier proof.

The problem is to find the relation between the shape of the two-dimensional equilibrium
nucleus, and the polar diagram of the free energy of a boundary element as a function of its
orientation. The shape is fixed by the condition of minimum total free energy for a given
area of nucleus. Let (r,¢) be the polar co-ordinates (figure 29) of a point 7" of the crystal
boundary S, and let (x, %) be the corresponding Cartesian co-ordinates. Construct a tangent
to S at 7, and let OM be a perpendicular from the origin to the tangent (length p). Let
f(0) be the edge free energy per unit length of the element of boundary at 7. The line
element for the boundary in parametric form is

ds = (#2+g2)t dt, (D1)

where the dot denotes differentiation with respect to the parameter £. We now choose ¢
as the parameter. Then the total edge free energy F and area n, (number of molecules) of
our nucleus are given by

F= [ 10) o, o= [(xg—ys) db, (D2)
respectively. From figure 29, p ==xcosf+ysind. (D3)

Let us find the locus of M as 7" goes over the whole of the curve S. This will give the ‘pedal’
of S, which is determined by (D 3) and the equation obtained from it by partial differentiation
with respect to §. Conversely, if the pedal is known, i.e. p is given as a function of 4, then the
(%,y) equation of § can be obtained from the equations

x=pc.osﬁ—].33in0,} (D4)
y=psinf+pcosd.
Using these expressions we can write (D2) in the form
. 1 .
F=[(p+h)fdb, ny= 5[ (p+P) pds. (D5)

The problem now is to minimize F subject to the condition of 7, being constant. Intro-
ducing the Lagrange multiplier A, the appropriate Euler equation giving the minimum

condition is
0Q d (0Q\ , d% (0Q\
o~ \35) i (3p) =
where Q=13(p+D) p—Ap+h) S
These two equations reduce to p+p=Af+F), (Dé)

and the solution of this differential equation is

p(0) = Csin (0—F) +H1(0),
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where C'and ff are arbitrary constants. Now the first term on the right possesses the period 27;
so that if we choose the origin in such a way that the crystal possesses some rotational
symmetry with respect to it (centre of the crystal), we see that C = 0. Hence

p(0) = Af(0), (D7)
which shows that up to a constant factor the polar diagram of the edge free energy is the
pedal of the equilibrium shape of the crystal.

The foregoing theorem, which is a generalization of Wulfl’s theorem, enables us to study
~ the properties of the critical nucleus in a very general way. First we deduce from (D5),
(D6) and (D7) the total edge free energy F of our nucleus:

Fy = 2n/A. (D8)

The constant A can be determined in the following way. Assuming that the shape of the
nucleus does not change in the neighbourhood of the equilibrium dimensions, it was shown
in §15-2 (formula 88) that the total edge free energy of the critical nucleus is given by

Fy=2nkT Ina. (D9)

p .
\ Iy \
VA¢ Y
- >z
Ficure 29

Therefore, from (D8) and (D9), 1/A =kT Ina,
and (D7) becomes kT Ina =f(0)/p(0). (D10)

This equation represents not only a generalization of Wulff’s theorem, but also a generaliza-
tion of the Gibbs-Thomson formula—in two dimensions of course. Knowing f(f), equation
(D10) gives p(0), and hence the shape of the critical nucleus is derived by the following
geometrical construction. Draw a radius vector from the origin to the curve of p(f) and
construct a perpendicular to the radius vector at the point of intersection with the curve.
Then the envelope of these perpendiculars, when the radius vector describes a complete
revolution, defines the shape of the critical nucleus. Naturally, the curve of p(f) will be
closed if the free energy per unit length is single-valued. We emphasize here that 6 is generally
not the same as ¢, the polar angle in the shape diagram (figure 29).

For the particular points of the step for which the tangent to the shape is normal to the
radius vector, § = ¢ and p(¢) = r(¢4), and equation (D10) becomes

kT Ina = f(9)/r(9), (D11)
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showing that the distance from the centre to one of these particular points is proportional to
the edge. free energy per unit length at this point, which is the ordinary form of Wulff’s
theorem. If for r is independent of ¢ then (D11) becomes the Gibbs—Thomson equation in
two dimensions. ' ‘ ‘

It is possible to give a simple expression for the radius of curvature of the nucleus at a
point whose polar angle is ¢ in terms of the values of f(f) and f(6) at the corresponding point
in the edge free-energy diagram. The result is

p(#) = {f(0)+f (O)}/kT Ina, (D12)

the unit of length again being the intermolecular spacing.

The solution (D7) has been obtained on the assumption that § and its pedal possess
continuously turning tangents. When there are sharp corners in S, the solution also
applies for all pieces of § possessing continuously turning tangents. However, it may turn
out that more than one free-energy diagram corresponds to a given S. To illustrate this, let
us consider the polygonal equilibrium shape shown in figure 30, where § is the boundary
of the crystal and O is its centre.

Ficure 30

It is easily seen geometrically that if the free-energy diagram is that figure P obtained by
finding the pedal of S (a number of circular arcs, if § is polygonal), then any curve P’ lying
entirely outside P, but coinciding with P at the cusps C, will give the same S, namely that
given by P. If, however, the free-energy diagram lies entirely inside P, but coincides with P
at the cusps C, then we obtain a shape for the crystal " (different from §) which possesses
neither sharp corners nor straight edges, and there is a one-to-one correspondence between
$” and the free-energy diagram, so that given ' the free-energy diagram is determined
uniquely and vice versa. This is the case in the particular model which we have been
considering in part III. In the intermediate cases when the free-energy diagram P” lies
partly within and partly without P, then the corresponding crystal shape $” will have sharp
corners with or without straight segments in the boundary, depending on the actual form P”.

At T = 0 we expect most crystals to be polygonal (or polyhedral, in three dimensions).
The question arises: Are the corners rounded when 7> 0, or can it happen that the equili-
brium form remains polyhedral? If the potential energy were like P’ in figure 30, and if the
entropy correction were insufficient to bring the free-energy diagram within P, then sharp
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corners would remain. This seems to be the case for ionic crystals. Shuttleworth (1949) has
calculated the potential energies per unit area of the (1, 1, 0) and (1, 0, 0) faces of a numberof
ionic crystals and finds that their ratio is always greater than 2. Thus it would require
temperatures probably above the melting-point to give rounded edges. In the case of metals
near their melting-point, it is probable that the free-energy diagram will be within P,
therefore the edges will become rounded.

ApPENDIX E. AN OUTLINE OF THE MATRIX METHOD OF TREATING
CO-OPERATIVE PROBLEMS
Here we give a brief account of the mathematics leading to (93). The general methods are
due to Montroll (1941), Kramers & Wannier (1941), Onsager (1944), Onsager & Kaufmann
(1946) and Wannier (1945). We consider a chain of identical units, each capable of a range
of states x. Let the chain be m+1 units long, so that there are m bonds connecting them
(figure 31). Let the state of the rth unit be g,. If the units are in given fixed states, each bond
contributes #(4,, , #,) to the total energy of the chain, so that the total energy of the chain is

€= Ul s 15 )+ U(fons 1) F -+ U(fhos f11) - (E1)

Hence the partition function for the chain is

Jur = 3 exp (—afkT)

=ﬂ2 ﬂZ ”Z MEV(ﬂmH,M Vit 1) <o+ Vttos 1) (E2)
where Vi p') = exp {—u(p, p') [k T}, (E3)

and the summations in (E2) are carried out over all possible values of all the #’s. Since (E2)
is in the form of a matrix product, (E3) can be regarded as a matrix, x being a row index,
and ¢ a column index.

Ficure 31
If we define
D@, 1 (Uns1) =MZ #Z cor 2 Vttars ) Vttins 1) «+- Vttas 1), (E4)
m Hm-1 7y
we see from (B2) that g (4 )) = 3 Vlttyers ) Pot)- (E5)
Pm

®,, ., may be called the partial partition function relative to the state #,,,, and we see that
(E5) gives the effect on the partial partition function of a chain by the addition of another
unit. The complete partition function f,,,, is of course given by

fm+l - Z q)m+1(lum+l)' (E6)

Frmay
If the chain is very long, the ratios between the various components of @, ; will be the same
as those between the corresponding components of @, so that in the limit as m becomes
very large we obtain

q)m+l (Iu) = A(Dm(lu) . (E 7)
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Hence from (E 6) Jni1 = M (E8)

so that A must be the partition function per unit. Combining (E5), (E6) and (E7) we are
confronted by the following eigenvalue problem for A:

2V u) (i) = A (), (E9)
I
which can be written in the contracted notation
(Vs 9) (1) = 2y (w)- (E10)

By (E3) the elements of V are all positive, and by (E4) the components of ¢ (i.e. the
components of @) are all positive. This enables us to conclude by theorems due to Frobenius
(1908, 190g) that A is the largest eigenvalue of V. The results used here are that a matrix with
positive elements has a largest eigenvalue which is simple and greater in absolute magnitude
than any other eigenvalue, and that, moreover, the eigenvector belonging to it has
components of only one sign. We may choose this sign to be positive. This eigenvector is the
only one with this property.

E1. The one-dimensional, two-level case

As a preliminary to the solution of our two-dimensional, two-level problem, we first find
the V for the corresponding one-dimensional problem. In this problem the interaction
energy between two neighbouring molecules is zero if they have the same level and 14, if
not. We designate one of the possible levels by # = -1 and the other by # = — 1. The ‘inter-
action’ energy between two neighbours can then be put in the form

N
u(/ua/'l) ) 2 ? (Ell)
which gives 0 if 4 = x4’ and 3¢, otherwise. Hence from (E 3)
Vip ') = exp {EH (' — 1)}, (E12)
where H= ¢,[2kT. (E13)

The operator ¥ in (E12) has the following effect on a general function (which we may
interpret, if we please, as the partial partition function):

W ¥) (w) = ¥ (W) +e#y (—p), (E14)

using the contracted notation. If we define an operator C by the equation
(G 9) () = ¥ (=p); (E15)
we can write V as v V=1+e*C, (E16)
using (E14). From (E15) =1, (E17)

so C has the eigenvalues =41, showing that V has the eigenvalues 1+¢~7. The upper sign
gives the largest eigenvalue, and hence the partition function per molecule.
In order to use these results in the treatment of the two-dimensional problem, we write ¥V

in the form V — Agific, (E18)
which is possible in view of (E17), since we have, using (E17) and (E18),
V = A(cosh $H+Csinh }H).

Vol. 243. A. 47
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Thus, from (E16), A?2=1—¢"2" = 2¢ Hsinh H, (E19)
coth 1H = ¢#. (E 20)

Hence V= (ée—Hsinh H)iexp (1HC), (E21)

where H is given by (E20).

E2. The two-dimensional, two-level case: rectangular lattice

In order to treat the two-dimensional case we consider n parallel chains of the same type
as before. We shall build up the two-dimensional lattice in two steps by the addition of
complete columns of molecules. Thus our ‘unit’ is the column. In the first stage we include
only the ‘horizontal’ bonds (left-hand, figure 32), and in the second stage we insert the
‘vertical’ bonds (right-hand, figure 32). We associate with the last element in each chain
(thejth chain) the variable 4, which can take the values + 1. A complete set of values assigned

el e ) St O L a3 (o]

_*——I ——0) e 3, e Y, e (3

I I
Ficure 32

to the n variables describes a configuration (#) = (g, ...,#,) of the last column, which
constitutes our unit in the sense of figure 31. Thus the operator which describes the addition
of a new column with the horizontal bonds only is

V, = (2¢~#sinh H)exp (L1HB) (E22)
from (E21), where B= i G, (E23)
j=1

and the individual operators C; have the effect

(Cis V) (Bas wees iy ooes ) = Y(fhrs wvvs =By wees )~ (E24)

We now wish to find the operator which represents the insertion of the vertical interactions,
as in the right-hand figure (figure 32). The total energy corresponding to the inclusion of
the vertical bonds will be

n—-1 |
Wy o) = '3 G2 (1AL, (E25)
i=1
where }¢, is the strength of the vertical bond when it is not zero. We assume for generality
that ¢, and ¢, are not necessarily equal. The effect of the interaction is to multiply the
general term in the partial partition function, represented by one of the 2 vector com-
ponents ¥(uy, ..., #,) by the appropriate factor

exp{~u(,u1, °°°)ﬂn)/kn'
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The corresponding operator is represented by a diagonal matrix. It can be constructed from
the simple operators S, ..., S, which multiply ¢ by the sign of its first, ..., nth argument as
follows: '

(Si: %) (1“1) °"a:uja -nnun) = ﬂj%(ﬂp "-nuj) "-n”n): (E26)
n—1
A=3 58 (E27)
J= .
V, = exp{—}(n—1) H'}exp (}H'4), (E28)
where H' = ¢,/2kT.

Hence the operator associated with our problem is
V =V,V, = exp (—inH) exp{—%(n—1) H'} (2sinh H)nexp (}H'4) exp (1HB). (E29)
The largest eigenvalue of V is then the partition function per column of the lattice, and its
nth root is the partition function per molecule.
Onsager (1944) has shown that the largest elgenvalue Ay of exp (H ’A) exp (HB) is given
by
2InA,, = y(2n/n) +y(4n[n) + ... +y(27) +c, (E30)
where |¢|<H’ and ‘
cosh y(w) = cosh 2H’ cosh 2H —sinh 2H’ sinh 2H cos . (E31)

This leads to the conclusion that, in our case, the partition function per molecule A is given
by :

Ind = —FET = }In (2sinh H) —~ }(H+-H') + 5 [ 7(0) do (E32)
0

where coshy(w) = cosh H' cosh H—sinh H'sinh H cos» (E33)

when n->o00. This result is exact, the effect of ¢ disappearing by division with z and the
summation converging to a definite integral..
In the special case of quadratic symmetry, H = H’, and these results reduce to

cosh y(w) = cosh H coth H—cos v, (E34)
since it follows from (E20) that
sinh Hsinh H = cosh H tanh H = cosh Htanh H = 1 (E35)
and ntet 1 f "In 11 +J(1 —k2sin? o)} do, (E.36)
2coshH  2m), . ,
where k, = (2sinh H)/cosh? H. (E37)

We cannot reduce (E386) any further, but the potential energy per molecule U can be
given in terms of the tabulated functions. We have

Uz—gd%(ln@, (E38)

which yields § = 2Ujp = ().
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From (E36), (E37) and (E 38) we finally obtain

S=1-3 (1 +2 k21<1) coth H, (E39)

im

where Biyk2—1, K —K(k)= f (1—K2sin?0) ! do, (E40)

0

the latter integral being the complete elliptic integral of the first kind; formula (E39) is
the formula (93) in the text.
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